Fabrication and Characterization of a Hierarchical Manifold Microchannel Heat Sink Array for Evaporative Intrachip Cooling

K. P. Drummond, J. A. Weibel, S. V. Garimella, D. Back, D. B. Janes, M. D. Sinanis, and D. Peroulis

OBJECTIVE

Design, fabricate, and characterize a hierarchical manifold microchannel heat sink to dissipate high heat fluxes at low pressure drops using evaporative cooling.

APPROACH

- Deliver HFE-7100 to a 9 × 9 array of silicon microchannel heat sinks via a hierarchical manifold distributor.
- Parallel flow paths allow for shorter flow lengths and decreased pressure drop.
- Scalable design allows for further flow discretization.

SCHEMATIC DIAGRAM OF HEAT SINK CONCEPT

(ICECool) Fundamentals program.

TEST VEHICLE, WIRE-BONDED CHIP, CHANNEL CROSS-SECTIONS, AND HEATERS/RTDs

RESULTS

- Dissipated high heat fluxes (~ 450 W/cm²) at reasonable pressure drops (< 75 kPa) and low chip temperature rise (< 30 ° C).
- Low mass flux needed for high performance.
- Increasing fluid mass flux increases maximum heat flux.
- Maximum heat transfer coefficient occurs at intermediate heat flux.

SELECTED PUBLICATIONS

- K. P. Drummond, J. A. Weibel, S. V. Garimella, D. Back, D. B. Janes, M. D. Sinanis, and D. Peroulis, 40th GOMACTech Conference, 2015.
- K. P. Drummond, J. A. Weibel, S. V. Garimella, D. Back, D. B. Janes, M. D. Sinanis, and D. Peroulis, ITHERM Conference, 2016.

FABRICATION

- Etch high aspect-ratio microchannels into silicon (DRIE).
- Pattern heaters and an array of RTDs on backside of microchannels to apply heat flux and measure chip temperatures, respectively.
- Fabricate hierarchical manifold to facilitate fluid delivery to microchannel array.
- Bond manifold to microchannels

HEAT FLUX VS. CHIP TEMP

HEAT TRANS. COEFF. VS. FLUX

