
Impedance-Based Visualization of Voids in Thermal Interface Materials

Stephen Taylor, Sidharth Paranjape, Suresh Garimella

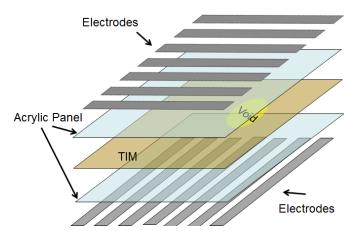
SCHOOL OF MECHANICAL ENGINEERING

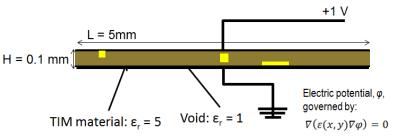
Objective

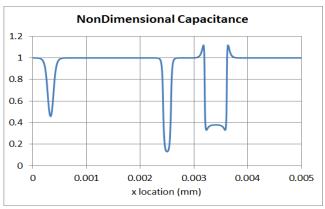
Flaws in thermal interface material (TIM) distribution reduce performance of heat dissipation devices.

This project seeks to develop a method of impedance-based visualization to detect flaws in the TIM distribution on small surfaces.

Potential benefits include:


- Non-destructive comparison of distribution of different TIMs
- Non-destructive comparison of TIM application methods
- Prediction of hot spots for imperfectly distributed TIMs


Method


Right: Voids in the distribution of the TIM will cause changes in electrical capacitance across the gap. Thus, the presence of voids may be detected through anomalies in electrical capacitance.

Right: Simulated capacitance per unit length along a thermal interface region with three square voids of various shapes.

Below: Voids will be detected by taking an array of N² capacitance measurements with two N by N sets of electrodes.

Impact

- In-situ characterization of voids distribution as a function of TIM type, application method.
- Method for characterization of void development as a function of time throughout thermal cycling.

Reference: Paranjape, S. et al., 2012, Electrical Impedance-Based Void Fraction Measurement and Flow Regime Identification in Microchannel Flows Under Adiabatic Conditions, IJMF, 42, 175-183.