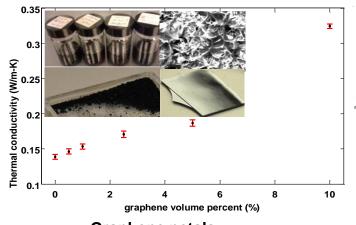

Graphene-based Thermal Interface Materials

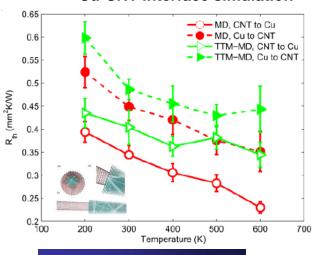
Faculty: X. L. Ruan, Y. P. Chen, T. Fisher Student: J. Hu, B. Qiu

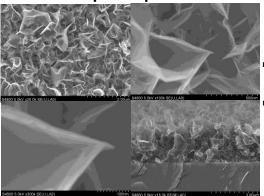
OBJECTIVE

Develop graphene based thermal interface materials (TIMs) that can enhance the TIM performances.

APPROACH


 Approach 1: Vertically grown (CVD) graphene sheets between (and bonded to) substrates


 Approach 2: Graphene composite/Graphite micro platelets/powder between substrates


Graphene composite thermal conductivity

Cu-CNT interface simulation

Graphene petals

IMPACT

- Thermal conductivity can be dramatically enhanced by adding graphene fillers.
- Thermal interface between SiO₂ and graphene petals grown on silicon and copper by MPCVD is characterized by 3ω method and the thermal interface resistance is estimated to be as low as 1.2 3.2 mm²K/W.

PUBLICATIONS

- J.N. Hu, W. Park, X.L. Ruan and Y. P. Chen, Proceedings of MRS Spring Meeting (2012).
- Y. Wang, S.Y. Chen, and X.L. Ruan, Appl. Phys. Lett., 100, 163101 (2012).
- J.N. Hu, Y. Wang, A. Vallabhaneni, X.L. Ruan, and Y.P. Chen, Appl. Phys. Lett., 99, 113101 (2012). RESEARCH CENTER