Anti-Noise Synthetic Jet Enhanced Heat Sinks

Faculty: Suresh V. Garimella, Tim Persoons, Justin Weibel Student: Kevin Drummond

OBJECTIVE

Optimize synthetic jet operation:

- (i) Maximize cooling efficiency $\eta = hA\Delta T / P_{el}$
- (ii) Maximum acoustic attenuation $\alpha = hA\Delta T / P_{ac}$

IMPACT

Synthetic jets provide increased granularity in available tools for heat rejection to ambient air:

- Augment natural convection at low power consumption
- Local enhancement of forced convection for hot spot cooling
- Operation in confined geometries
- Opportunity for dynamic control via flow vectoring

SELECTED PUBLICATIONS

- T Persoons, AIAA Journal, 50 (4): 916-92, 2012.
- T Persoons, A McGuinn, DB Murray, *Int J Heat Mass Transfer*, 54 (17-18): 3900-3908, 2011.
- P Valiorgue, T Persoons, A McGuinn, DB Murray, Exp Therm Fluid Sci, 33 (4): 597-603, 2009.
- T Persoons, TS O'Donovan, *Phys Fluids,* 19 (12): 128104, 2007.

APPROACH

Thermal Characterization

Dual jet configuration:

- Phase-controlled fluid motion
- Acoustic noise cancellation

ISO 10302

Acoustic Characterization

SELECTED RESULTS

Parametric co-optimization as a function of operating parameters

- Operating frequency, amplitude
- Dual jet phase separation

Distributions of local surface temperature and heat transfer coefficient

 $h (W/m^2K)$ $H/D = 12, \varphi = 0^\circ$

Purdue University - School of Mechanical Engineering