Anti-Noise Synthetic Jet Enhanced Heat Sinks Faculty: Suresh V. Garimella, Tim Persoons (post-doc)

OBJECTIVE

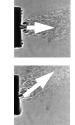
Optimize the performance of heat sinks with multiple embedded synthetic jets to achieve minimal acoustic noise emission.

IMPACT

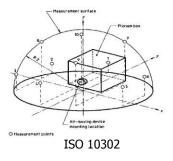
Synthetic jets have excellent potential for spot cooling in confined geometries. This research uses adjacent rectangular synthetic jets to: (i) Maximize cooling efficiency $\eta = hA\Delta T / Pel$ (ii) Maximum acoustic attenuation $a = hA\Delta T / Pac$

SELECTED PUBLICATIONS

- T Persoons, A McGuinn, DB Murray, Int J Heat Mass Transfer 54(17-18): 3900-3908, 2011.
- T Persoons, SV Garimella, Workshop on Thermal Management in Telecomm. Syst. and Data Centers, Richardson, TX, 25-26 Oct 2010
- P Valiorgue, T Persoons, A McGuinn, DB Murray, Exp Therm Fluid Sci 33(4): 597-603, 2009.
- T Persoons, TS O'Donovan, Phys Fluids 19(12): 128104, 2007.



Thermal Characterization • Phase-controlled fluid motion

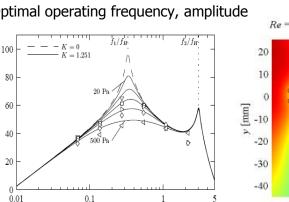

IR thermal

imaging camera

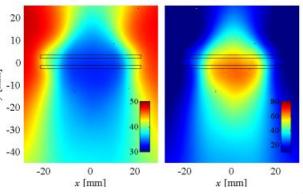
Acoustic noise cancellation

Smith & Glezer AIAA J, 2005

SELECTED RESULTS


Physics-based model predicts behavior:

- Efficiency (heat removal / energy input)
- Acoustic noise



 ω / ω_H

Distributions of local surface temperature and heat transfer coefficient

h(x,y) [W/(m²K)] T(x,y) [°C] $Re = 282, L_0/d = 19.4, \phi = -180$ $Re = 282, L_0/d = 19.4, \phi = -180$

Purdue University - School of Mechanical Engineering

η*τ*| [dB]

Suresh V. Garimella