Cooling Technologies Research Center (CTRC)

Sustainable Energy Technologies

Publications

Research Group

    

Suresh V. Garimella

Chief Global Affairs Officer  

Goodson Distinguished Professor

 

School of Mechanical Engineering and Birck Nanotechnology Center
Purdue University
585 Purdue Mall
West Lafayette, IN 47907-2088
Mechanical Engineering Phone : (765) 494-5621
Global Affairs Phone : (765) 494-9095
e-mail: sureshg@purdue.edu

Biography (pdf)

ResearcherID site

Dr. Suresh Garimella is the R. Eugene and Susie E. Goodson Distinguished Professor in the School of Mechanical Engineering at Purdue University, and Director of the Cooling Technologies Research Center (CTRC), an Industry/University Cooperative Research Center of the National Science Foundation. He also directs the Electronics Cooling Laboratory and the Solidification Heat Transfer Laboratory. He served as the Associate Vice President leading the Office of Engagement at Purdue University from 2011 to 2013, and was recently appointed Purdue’s Chief Global Affairs Officer.

Education
Ph.D., Mechanical Engineering, University of California at Berkeley, 1989

M.S., Mechanical Engineering,The Ohio State University, Columbus, 1986

Bachelor of Technology, Mechanical Engineering, Indian Institute of Technology, Madras, 1985

 

Research Interests

Dr. Garimella’s research interests lie in the fields of micro- and nano-scale transport phenomena, energy efficiency in electronics, high-performance compact cooling technologies, sustainable energy systems and policy, and materials processing.


Honors and Awards Service

Selected Professional Activities

Purdue Administrative Service

U.S. Government Service

Cooling Technologies Research Center

Research

Teaching

Dr. Garimella's Brief Biography (pdf)

Honors and Awards

(return to top)

  • 75th Anniversary Medal, Heat Transfer Division, American Society of Mechanical Engineers, June 2013

  • Provost's Award for Outstanding Graduate Mentor, Purdue University, 2012

  • Fellow, American Association for the Advancement of Science, 2011

  • Senior Fellow, Energy and Climate Partnership of the Americas (ECPA), U.S Department of State, 2011

  • Alexander Schwarzkopf Prize for Technology Innovation, National Science Foundation Industry University Cooperative Research Center (IUCRC) Association, 2011

  • Faculty Award of Excellence for Mentoring, Purdue University College of Engineering, 2011

  • Jefferson Science Fellow, U.S. Department of State, August 2010 to present

  • Heat Transfer Memorial Award, 2010, American Society of Mechanical Engineers, for innovative and pioneering work on basic and applied problems in microscale heat transfer, thermal management of electronic systems, phase change heat transfer and materials processing, leading to extensive contributions to archival heat transfer literature and an impressive impact on industry

  • Distinguished Alumnus Award of IIT Madras for 2010, Indian Institute of Technology, Madras in recognition of distinguished contributions to society

  • R. Eugene and Susie E. Goodson Distinguished Professorship, Purdue University, 2009

  • Harvey A. Rosten Award for Excellence for outstanding work in the field of thermal analysis of electronic equipment, 2009

  • Allan Kraus Thermal Management Medal, for demonstrated outstanding achievements in thermal management of electronic systems and commitment to the field of thermal sciences, American Society of Mechanical Engineers, 2009

  • Ruth and Joel Spira Award, 2009, for outstanding contributions to the School of Mechanical Engineering and for inspiring students and fostering excellence in commercial or defence product realization

  • Gustus L. Larson Memorial Award, American Society of Mechanical Engineers, 2004

  • Fellow, American Society of Mechanical Engineers, 2002

  • Distance Teaching Award, selected by students and presented annually by the Division of Engineering Professional Education of Purdue University to an engineering faculty member who best represents excellence in teaching at a distance, 2009

  • R. Eugene and Susie E. Goodson Professorship of Mechanical Engineering, 2006

  • Cray-Research Professorship, Fall 1992 - Spring 1999

  • Fellow, Center of Smart Interfaces, Technical University of Darmstadt, Germany, effective July 2008

  • Honorary Guest Professor, Xi'an JiaoTong University, Xi'an, China, effective June 2006

  • Invited Participant, 2006 U.S. Frontiers of Engineering Symposium of the National Academy of Engineering, September 21-23, Ford Research and Innovation Center, Dearborn, Michigan

  • Invited Speaker at the National Academy of Engineering Mechanical Engineering Section, Fall Meeting, October 4, 2004

  • Member, Scientific Council, International Centre for Heat and Mass Transfer (ICHMT), effective February 2009.

  • K16 Clock Award, 2006, for Service to the ASME Heat Transfer Division's K-16 Community and Continued Outstanding Contributions to the Science and Engineering of Heat Transfer in Electronics

  • Indiana 21st Century Research & Technology Fund Award, for Outstanding Achievement as a member of the 2008 Indiana 21st Century Research & Technology Fund

  • UWM Outstanding Teaching Award, 1997

  • Graduate School/UWM Foundation Research Award, 1995

  • Best Poster Prize, ASME International Mechanical Engineering Congress and Exposition, Lake Buena Vista, Florida, November 13-19, 2009

  • Best Poster Prizes (2), ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of Micro, Nano, and Electronic Systems (InterPACK ’09), San Francisco, July 19-23, 2009

  • Best Paper Award in Heat Transfer, 2008 ASME Summer Heat Transfer Conference, Jacksonville, FL, August 10-14, 2008

  • Best Poster Prize, International Heat Transfer Conference, Sydney, Australia, August 13-18, 2006

  • Best Paper Award, Sixth ISHMT/ASME Heat and Mass Transfer Conference, Kalpakkam, India, January 5-7, 2004

  • Society of Automotive Engineers' Outstanding Faculty Advisor Award, 1994

  • Research Initiation Award, National Science Foundation, 1992

  • Society of Automotive Engineers' Ralph R. Teetor Educational Award, 1992

  • Outstanding Teaching Award, UWM College of Engineering and Applied Science, 1992

  • Ohio State University Engineering Achievement Award for Excellence in Scholarship and Research, 1986

 

Selected Professional Activities

(return to top)

  • Editorial Advisory Board Member, Energy Conversion and Management (2013-present)

  • Member, U.S.-Russia Bilateral Presidential Commission Science & Technology Working Group (2011-2012)

  • Editorial Board Member, Applied Energy (2008-present)

  • Editorial Board Member, International Journal of Micro-Nano Scale Transport (2009-present)

  • Editor, Experimental Heat Transfer (2005-present)

  • Member, ASME Heat Transfer Division K-16 Committee on Heat Transfer in Electronic Equipment (1990 - present)

  • Coordinator, Washington Energy Seminar, U.S. Department of Energy, March 7-9, 2011

  • Workshop Organizer and Chair, Thermal Management in Telecommunication Systems and Data Centers, Dallas, Texas, October 25-26, 2010.

  • Associate Editor, ASME Journal of Heat Transfer (2004-2007)

  • Associate Editor, ASME Thermal Science and Engineering Applications (2008-2011)

  • Editor, Heat Transfer-Recent Contents (1995 - 98)

  • Editorial Board, Experimental Thermal and Fluid Science (1993 - 2002)

  • Member, National Electronics Manufacturing Initiative (NEMI) Thermal Management Technical Working Group (2002-05)

  • Chair, ASME Heat Transfer Division Membership Development Committee (2005-07); Member (03-07)

  • Conference Organizer and Chair (with A. Fleischer), Thermal Challenges in Next Generation Electronic Systems: Thermes 2007, Santa Fe, New Mexico, January 7-10, 2007

  • Guest Editor, Heat Transfer Engineering Special Issue (Vol. 28, No. 4, 2008, with S. Revankar)

  • Guest Editor, IEEE Transactions on Components and Packaging Technologies Special Issue on Thermal Challenges in Next Generation Electronic Systems (Volume 25, Number 4, 2002, with Y. Joshi)

  • Guest Editor, Microelectronics Journal Special Issue on Thermal Challenges in Next Generation Electronic Systems (Vol. 34, No. 3, 2003, with Y. Joshi)

  • Conference Co-Organizer, 7th ISHMT-ASME Heat and Mass Transfer Conference, IIT Guwahati, India, January 4-6, 2006

  • Conference Co-Chair, Next-Generation Thermal Management Materials and Systems Conference, Dallas, October 28-30, 2002

  • Conference Organizer and Chair (with Y. Joshi), Thermal Challenges in Next Generation Electronic Systems: Thermes 2002, United Engineering Foundation Conference, Santa Fe, New Mexico, January 13-16, 2002

 

Purdue Administrative Service

(return to top)

Dr. Garimella was appointed Purdue’s Chief Global Affairs Officer in May 2013.  Prior to this, he led Purdue’s Office of Engagement as Associate Vice President from August 2011 to May 2013. The purpose of the Office is to link the people of Indiana and the world with University resources ‎that can address issues affecting prosperity and quality of life at the state, national and global levels. Engagement activities are organized around five broad themes: economic development, online/distance learning, enhancing education in P-12 schools, service learning and ‎community engagement, and global engagement.

Programs housed in the Office include the Technical Assistance Program, Purdue Extension, Purdue Extended Campus, Purdue Center for Regional Development, Indiana STEM Resource Network, Global Business Engagement, and Engagement offices in Indianapolis and Fort Wayne. The Office works closely with the Associate Deans Council, the Engagement Council , Service-Learning programs, Discovery Park, Purdue Research Park, and regional campuses, and maintains relationships with local, state and federal offices, connecting faculty efforts to state and private sector resources and needs. Recently, Purdue's engagement efforts have expanded to international strategic partnerships that can increase economic activity for Indiana and create opportunities for Purdue students and faculty. New initiatives include engagements with India, China, and several countries in Latin and Central America and the Caribbean.

Engagement is essentially an academic function at Purdue, with faculty members integrating engagement initiatives with their discovery and learning missions. Current efforts are focused on encouraging and recognizing the scholarship of engagement, including in the promotion and tenure process and through new university-level awards. The Office partners with the state in advancing manufacturing, energy, life sciences, defense assets, transportation and logistics, and STEM and workforce development efforts, and serves to enhance the impact of research and education programs of Purdue faculty and students.

 

U.S. Government Service

(return to top)

As a science advisor in the International Energy and Commodity Policy of the State Department's Economic Bureau, Dr. Garimella has been exploring pathways to a clean energy future, connecting across different Bureaus and Departments.  He had convened biweekly brownbag lunches for a Clean Energy Futures Working Group which discussed cross-cutting issues at the intersection of energy security and climate change with a variety of expert speakers.  He coordinated the March 2011 offering of the Washington Energy Seminar, which is organized to brief officers across the U.S. Government on energy issues.  As a member of the interagency roundtable working group on rare earth elements led by the White House Office of Science and Technology Policy, he contributed to formulating diplomatic and policy solutions to recent supply shortages of critical materials.  He was the Department delegate to the Committee on Energy Research and Technology of the International Energy Agency. He also participated as a Member of the U.S.- Russia Bilateral Presidential Commission Science & Technology Working Group visit to Moscow in February-March, 2011.

Most recently, he was appointed Senior Fellow of the State Department’s Energy and Climate Partnership of the Americas (ECPA), a regional partnership announced by President Obama at the April 2009 Summit of the Americas to promote clean energy, advance energy security, fight energy poverty, reduce greenhouse gas emissions, support strategies for sustainable landscapes and build capacity for climate change adaptation.

Dr. Garimella's lecture at Purdue University - November 10, 2011; Competing Policy Choices at the Intersection of Energy & Climate Change: An Engineer's Role

 

Compact, High-Performance Cooling Technologies Research Center (CTRC)

(return to top)

The Compact, High-Performance Cooling Technologies Research Center (CTRC) founded and directed by Dr. Garimella is a National Science Foundation Industry/University Cooperative Research Center. It provides tremendous opportunities to translate academic research into useful partnerships with industry, facilitate interactions with practicing engineers, organize industrial internships and avenues for career placement for graduate students, explore distance learning initiatives, and enhance technology transfer. Many of the key electronics and computer companies worldwide are members in this Center, which has attracted large State and Federal grants.  

 

Research

(return to top)

Dr. Garimella’s research group, consisting of 43 PhD, 36 MS students and 41 visiting scholars/post-docs – alumni and present, has published over 500 refereed journal and conference publications, besides editing or contributing to a number of books.  Fourteen US patents have been issued or filed for their inventions.  Fifteen former members of this group are in faculty positions at leading universities around the world.  Extramural research funding for his research programs has been provided by the US National Science Foundation, NASA, US Army, DARPA, ONR, Members of the NSF Cooling Technologies Research Center, Semiconductor Research Corporation, State of Indiana 21st Century Research and Technology Fund, Hoosier Energy, Electric Power Research Institute (EPRI), and other federal, State and industrial sponsors.  The group’s publications on a wide range of topics including microchannel transport, electromechanical microfluidic actuation and micropumps, novel microscale diagnostics, thin film transport and heat pipes, transport in bubbles, piezoelectric fans, refrigeration, jet impingement, thermal contact resistance, heat transfer enhancement, phase change energy storage and metal foams, solidification, plasmas and renewable and sustainable energy systems, are listed here.

Dr. Garimella’s most recent work has been in renewable and sustainable energy technology and policy.  As Jefferson Science Fellow at the U.S. State Department, Dr. Garimella was investigating the nexus between electricity, development and emissions, with a particular focus on the scalability, intermittency and variability of renewable sources.  He has given lectures on the topic at the State Department, at DOE, and at the White House.  He was the State Department’s Delegate at the International Energy Agency, and was focused on transmission systems and grid-level storage, which are critical ingredients to realizing a clean-energy future.  His group’s recent work in solar thermal energy storage has led to a comprehensive understanding of the operation and efficient design of thermocline storage systems.  Waste heat recovery from power plants and industrial sources has been another focus of this work. Dr. Garimella is part of the investigating team in the Solar Energy Research Institute for India and the United States (SERIIUS), co-led by the Indian Institute of Science, Bangalore, and the National Renewable Energy Laboratory, and jointly supported by DOE and the Indian Ministry of Science and Technology with $50M in funding. Through an environment of cooperation and innovation "without borders" this Indo-US Joint Clean Energy Research and Development Center (JCERDC) will develop and ready emerging and revolutionary solar electricity technologies toward the long-term success of India's Jawaharlal Nehru National Solar Energy Mission and the U.S. Department of Energy's SunShot Initiative.

In the field of microscale transport, Dr. Garimella's  group has contributed to the understanding of heat and mass transport in very thin evaporating liquid films.  They have experimentally identified the specific, localized regions of enhanced transport, and developed analytical and numerical models for predicting and optimizing heat transfer across thin liquid films in applications such as heat pipes.  They have also developed a first-of-its-kind model to predict the transient, three-dimensional operation of miniature heat pipes under distributed heat loading.  More recently, they have investigated novel wick structures, which help sustain optimal thin films of liquid over the entire wick surface, and thus greatly enhance heat spreading and transport.  Their work has generated a fundamental understanding of single- and two-phase transport in microchannels.  Comprehensive microchannel boiling flow regime maps including quantitative criteria for transitions between different regimes have been developed, along with a robust criterion in terms of geometric and operating conditions for determining when confinement effects become important in flow boiling.  This understanding, based on novel localized measurements of heat transfer, pressure drop, and high-speed flow regime visualization and mapping, is leading to regime-based models that offer more physically meaningful predictions of heat transport in microchannels. Supporting this work, his group has developed infrared micro-particle image velocimetry (IR-µPIV), a non-intrusive means of measuring velocities in sub-surface microfluidic channels in silicon, without resort to a transparent window. They have also demonstrated a planar laser-induced fluorescence approach using temperature-sensitive dyes for highly resolved and non-intrusive temperature measurements for higher flow rates.

The coupled electric, fluidic and thermal fields in electromechanically actuated flows at the microscale are another focus of the group’s research.  This includes investigations of the efficacy of chip-integrated electrohydrodynamic (EHD) pumping, electrowetting transport of fluid droplets on smooth and superhydrophobic surfaces, and dielectrophoretically (DEP) induced flow in nanofluids.

The group is widely recognized for pioneering the use of liquid jets for high-flux heat removal, with a particular focus on confined jets to be used in the compact spaces encountered in the thermal management of high-performance electronics systems.

Their innovative experimental and analytical investigations in the area of piezoelectrically actuated cantilevers including electro-mechanical coupling, fluidic damping, flow-structure interactions, structural optimization, and their thermal impact for cooling, have led to the use of these piezofans in practical applications where ultra-light, low-noise, low-power cooling techniques are desired.  Microscale ion-driven airflow is another air cooling technique that was successfully pioneered by the group.

Dr. Garimella and his group have conducted first-principles analyses of heterogeneous open-cell foam and lattice frame structures. The models developed allow for great precision in computing local heat transfer, flow fields and transport properties in foam materials, with applications not only in the transient thermal management of electronics with imbedded phase change materials, but also in solar-thermal energy management, biopreservation technologies and musculo-skeletal tissue, hydrogen sequestration and other applications.

The US Army, NASA, and NSF have supported Dr. Garimella’s work on micro- and macro-scale thermal phenomena in materials processing.  He has addressed important fundamental questions regarding transport at multiple scales, with novel experimental approaches coupled with morphological stability analyses and modeling of the role of thermo-solutal melt convection and under-cooling on interface shape, propagation and stability.  Applications include crystal growth in microgravity environments, alloy casting, defect reduction in the casting of energetic materials.

Teaching

(return to top)

Dr. Garimella has made major contributions to curriculum development in the thermal sciences with important applications in electronics cooling and materials processing at Purdue University and at the University of Wisconsin-Milwaukee.  He has taught a variety of undergraduate, first-year graduate and advanced graduate heat transfer courses, and has developed a number of undergraduate and graduate courses (Thermal Concerns in Computer Design, Solidification Heat Transfer, Heat Transfer in Materials Processing, and Heat Transfer in Electronic Systems).  In addition, he instructed the capstone experimentation and design course, and served as the coordinator for the department’s undergraduate instructional laboratories, at UWM.  At Purdue, he developed the Certificate Program in Advanced Heat Transfer with the backing of United Technologies Corporation.  He has also developed and delivered a number of tailored courses and tutorials that have been delivered to industrial and academic audiences in the US and abroad.

Over 50 undergraduate students have worked as part of Dr. Garimella’s research group, some through the NSF REU program.  Recently, he also established an undergraduate research experience component in his NSF Center, by offering CTRC Undergraduate Research Fellowships to encourage students in discovery-based learning.  Many of these students have subsequently enrolled in graduate programs.  Besides his teaching responsibilities, Dr. Garimella was actively involved at UWM in undergraduate advising, serving as Chair of the UWM College Curriculum Committee.  He was also a very active Faculty Advisor for the SAE student chapter at UWM for seven years, receiving an SAE Outstanding Faculty Advisor Award in 1994.  Dr. Garimella has participated in voluntary community teaching efforts such as the College for Kids and Minority High School Research Apprenticeship programs.

Dr. Garimella’s teaching effectiveness has been well recognized via teaching and advising awards, and he has consistently received some of the top student evaluations in the department, both at Purdue and UWM.  He received the Ralph Teetor Award from the SAE for being a nationally recognized outstanding young educator.  The Engineering Professional Education office selected him for the Distance Faculty Award for 2009 based on nomination and evaluations by distance students. The UWM College of Engineering and Applied Science awarded him the 1992 annual Outstanding Teacher Award.  In 1997, he was awarded the UWM Distinguished Teaching Award.

Dr. Garimella has taught numerous courses in heat transfer including Heat and Mass Transfer (ME 315), Heat and Mass Transfer Laboratory (ME315L), Intermediate Heat Transfer (ME 505), Convection of Heat and Mass (ME 605), and Heat Transfer in Electronic Systems (ME 511).


 

Copyright © 2013 by S. V. Garimella.
Any unauthorized use, copying or mirroring strictly prohibited.

If you have trouble accessing this page because of a disability,
please contact the consortium administrator at
dkemeny@purdue.edu.