
Building Adaptable  
Software for Resilience

Milind Kulkarni

CRISP Seminar, 9/27/2018



what do we mean by resilience? 

• When people think software resilience, they often think of specific 
issues: 


• Fault tolerance: The ability to tolerate failures during application 
execution (hardware failure, failure of other software components, etc.)


• Maybe the most common sense. Microsoft defines resiliency as “the 
ability of a system to gracefully handle and recover from failures”


• Security: The ability to withstand malicious users or environment



a broader view

resilience, noun: an ability to recover from 

or easily adjust to misfortune or change



a broader view

resilience, noun: an ability to recover from 

or easily adjust to misfortune or change

software resilience, noun: an ability for 
software to adapt to change 



software resilience as adaptability 

• Software should be able to adapt to different circumstances


• Hardware platform not the same as expected: failing hardware, 
removing hardware, adding hardware, changing hardware


• Usage scenario not the same as expected: input is erroneous, input is 
malicious, input is larger or smaller than expected


• Goal: software written one time, but can adapt to a wide variety of 
different scenarios



adaptation scenarios

• Hardware availability can change dramatically due to failure 

• This is “normal” fault tolerance: how can software react to unexpected 
changes in the operating environment such as the failure of hardware


• A wide range of techniques (too many to list)


• But these are not the only adaptation scenarios to consider!



adaptation scenarios

• Hardware availability can change dramatically due to failure 

• This is “normal” fault tolerance: how can software react to unexpected 
changes in the operating environment such as the failure of hardware


• A wide range of techniques (too many to list)


• But these are not the only adaptation scenarios to consider!



adaptation scenarios

• Hardware availability can change dramatically due to failure 

• This is “normal” fault tolerance: how can software react to unexpected 
changes in the operating environment such as the failure of hardware


• A wide range of techniques (too many to list)


• But these are not the only adaptation scenarios to consider!



adaptation scenarios

• Hardware availability can change dramatically due to failure 

• This is “normal” fault tolerance: how can software react to unexpected 
changes in the operating environment such as the failure of hardware


• A wide range of techniques (too many to list)


• But these are not the only adaptation scenarios to consider!



parameter tuning 
• Key hardware parameters vary across systems 

• Same architecture, but different specific properties (more cores, less memory, 
etc.)


• Often can be handled by changing parameters in software (number of threads, 
parameters that govern cache usage, etc.)


• Basic algorithms/implementations usually do not change


• Often done at compile time or install time (hardware parameters like this do not 
usually change at run time)


• Not always possible — some scenarios require different parameters for 
different inputs, so you need to change at runtime


• One challenge: how do you determine what to set a parameter to?



parameter tuning 
• Key hardware parameters vary across systems 

• Same architecture, but different specific properties (more cores, less memory, 
etc.)


• Often can be handled by changing parameters in software (number of threads, 
parameters that govern cache usage, etc.)


• Basic algorithms/implementations usually do not change


• Often done at compile time or install time (hardware parameters like this do not 
usually change at run time)


• Not always possible — some scenarios require different parameters for 
different inputs, so you need to change at runtime


• One challenge: how do you determine what to set a parameter to?



parameter tuning 
• Key hardware parameters vary across systems 

• Same architecture, but different specific properties (more cores, less memory, 
etc.)


• Often can be handled by changing parameters in software (number of threads, 
parameters that govern cache usage, etc.)


• Basic algorithms/implementations usually do not change


• Often done at compile time or install time (hardware parameters like this do not 
usually change at run time)


• Not always possible — some scenarios require different parameters for 
different inputs, so you need to change at runtime


• One challenge: how do you determine what to set a parameter to?



parameter tuning 
• Key hardware parameters vary across systems 

• Same architecture, but different specific properties (more cores, less memory, 
etc.)


• Often can be handled by changing parameters in software (number of threads, 
parameters that govern cache usage, etc.)


• Basic algorithms/implementations usually do not change


• Often done at compile time or install time (hardware parameters like this do not 
usually change at run time)


• Not always possible — some scenarios require different parameters for 
different inputs, so you need to change at runtime


• One challenge: how do you determine what to set a parameter to?



parameter tuning 
• Key hardware parameters vary across systems 

• Same architecture, but different specific properties (more cores, less memory, 
etc.)


• Often can be handled by changing parameters in software (number of threads, 
parameters that govern cache usage, etc.)


• Basic algorithms/implementations usually do not change


• Often done at compile time or install time (hardware parameters like this do not 
usually change at run time)


• Not always possible — some scenarios require different parameters for 
different inputs, so you need to change at runtime


• One challenge: how do you determine what to set a parameter to?

Loop tiling is a classic compiler technique to restructure a loop 
so its working set fits in cache. The tile size must be tuned for 
different cache sizes


Point blocking [Jo and Kulkarni 2011, 2012; Weijiang et al. 2015] 
is the equivalent of tiling but for recursive tree programs. Tuning 
happens at runtime because “tile size” is input dependent 



novel architectures 
• Hardware platforms often change dramatically 

• Software that is written for one set of assumptions that hold true for one type of 
hardware may not hold true for a different type of hardware


• Modern GPUs allow programmers to easily write parallel programs


• But simply porting over programs that worked well on CPUs does not work — 
GPUs have different execution models that must be managed to get good 
performance


• Most work is compile-time or even earlier: compilers restructure code to work 
well on GPUs, or programmers use different design principles to write GPU code


• One challenge: how can programmers make as few changes to their code as 
possible to have high performance GPUs



novel architectures 
• Hardware platforms often change dramatically 

• Software that is written for one set of assumptions that hold true for one type of 
hardware may not hold true for a different type of hardware


• Modern GPUs allow programmers to easily write parallel programs


• But simply porting over programs that worked well on CPUs does not work — 
GPUs have different execution models that must be managed to get good 
performance


• Most work is compile-time or even earlier: compilers restructure code to work 
well on GPUs, or programmers use different design principles to write GPU code


• One challenge: how can programmers make as few changes to their code as 
possible to have high performance GPUs



novel architectures 
• Hardware platforms often change dramatically 

• Software that is written for one set of assumptions that hold true for one type of 
hardware may not hold true for a different type of hardware


• Modern GPUs allow programmers to easily write parallel programs


• But simply porting over programs that worked well on CPUs does not work — 
GPUs have different execution models that must be managed to get good 
performance


• Most work is compile-time or even earlier: compilers restructure code to work 
well on GPUs, or programmers use different design principles to write GPU code


• One challenge: how can programmers make as few changes to their code as 
possible to have high performance GPUs



novel architectures 
• Hardware platforms often change dramatically 

• Software that is written for one set of assumptions that hold true for one type of 
hardware may not hold true for a different type of hardware


• Modern GPUs allow programmers to easily write parallel programs


• But simply porting over programs that worked well on CPUs does not work — 
GPUs have different execution models that must be managed to get good 
performance


• Most work is compile-time or even earlier: compilers restructure code to work 
well on GPUs, or programmers use different design principles to write GPU code


• One challenge: how can programmers make as few changes to their code as 
possible to have high performance GPUs



novel architectures 
• Hardware platforms often change dramatically 

• Software that is written for one set of assumptions that hold true for one type of 
hardware may not hold true for a different type of hardware


• Modern GPUs allow programmers to easily write parallel programs


• But simply porting over programs that worked well on CPUs does not work — 
GPUs have different execution models that must be managed to get good 
performance


• Most work is compile-time or even earlier: compilers restructure code to work 
well on GPUs, or programmers use different design principles to write GPU code


• One challenge: how can programmers make as few changes to their code as 
possible to have high performance GPUs



novel architectures 
• Hardware platforms often change dramatically 

• Software that is written for one set of assumptions that hold true for one type of 
hardware may not hold true for a different type of hardware


• Modern GPUs allow programmers to easily write parallel programs


• But simply porting over programs that worked well on CPUs does not work — 
GPUs have different execution models that must be managed to get good 
performance


• Most work is compile-time or even earlier: compilers restructure code to work 
well on GPUs, or programmers use different design principles to write GPU code


• One challenge: how can programmers make as few changes to their code as 
possible to have high performance GPUs

Our work looks at algorithmic and compiler techniques to map 
irregular programs (that have unpredictable control and data 
behavior) to GPUs effectively [Jo and Kulkarni, 2013; Goldfarb 
and Kulkarni 2013; Ren et al 2015; Liu et al 2016; Ren et al 2017]


We have also looked at targeting distributed memory machines in 
the same way [Hegde et al 2017a, b]



elasticity
• Hardware resources change at runtime in a planned way 

• Hardware resources get added or removed at runtime in response to, e.g., 
changing demand (think: cloud computing)


• Key difference from fault tolerance: hardware change is 


• Software must be designed to dynamically adapt to different hardware resources


• Should take advantage of those resources (performance should be 
proportional to resources)


• Should happen without interruption/disruption of software behavior (i.e., 
without restarting software)


• One challenge: how can we write software so programmers do not have to 
consider the challenges of implementing elasticity



elasticity
• Hardware resources change at runtime in a planned way 

• Hardware resources get added or removed at runtime in response to, e.g., 
changing demand (think: cloud computing)


• Key difference from fault tolerance: hardware change is 


• Software must be designed to dynamically adapt to different hardware resources


• Should take advantage of those resources (performance should be 
proportional to resources)


• Should happen without interruption/disruption of software behavior (i.e., 
without restarting software)


• One challenge: how can we write software so programmers do not have to 
consider the challenges of implementing elasticity



elasticity
• Hardware resources change at runtime in a planned way 

• Hardware resources get added or removed at runtime in response to, e.g., 
changing demand (think: cloud computing)


• Key difference from fault tolerance: hardware change is 


• Software must be designed to dynamically adapt to different hardware resources


• Should take advantage of those resources (performance should be 
proportional to resources)


• Should happen without interruption/disruption of software behavior (i.e., 
without restarting software)


• One challenge: how can we write software so programmers do not have to 
consider the challenges of implementing elasticity



elasticity
• Hardware resources change at runtime in a planned way 

• Hardware resources get added or removed at runtime in response to, e.g., 
changing demand (think: cloud computing)


• Key difference from fault tolerance: hardware change is 


• Software must be designed to dynamically adapt to different hardware resources


• Should take advantage of those resources (performance should be 
proportional to resources)


• Should happen without interruption/disruption of software behavior (i.e., 
without restarting software)


• One challenge: how can we write software so programmers do not have to 
consider the challenges of implementing elasticity



elasticity
• Hardware resources change at runtime in a planned way 

• Hardware resources get added or removed at runtime in response to, e.g., 
changing demand (think: cloud computing)


• Key difference from fault tolerance: hardware change is planned 


• Software must be designed to dynamically adapt to different hardware resources


• Should take advantage of those resources (performance should be 
proportional to resources)


• Should happen without interruption/disruption of software behavior (i.e., 
without restarting software)


• One challenge: how can we write software so programmers do not have to 
consider the challenges of implementing elasticity



elasticity
• Hardware resources change at runtime in a planned way 

• Hardware resources get added or removed at runtime in response to, e.g., 
changing demand (think: cloud computing)


• Key difference from fault tolerance: hardware change is planned 


• Software must be designed to dynamically adapt to different hardware resources


• Should take advantage of those resources (performance should be 
proportional to resources)


• Should happen without interruption/disruption of software behavior (i.e., 
without restarting software)


• One challenge: how can we write software so programmers do not have to 
consider the challenges of implementing elasticity

InContext [Yoo et al. 2011] and EventWave [Chuang et al. 2013] 
provide programming models for transparent elasticity: 
programmers write inelastic software that does not consider 
dynamically changing hardware, and a runtime system 
transparently provides elasticity. 


Key challenge: how to restrict the programming model as little as 
possible while providing transparent elasticity



input scaling 
• Unexpected (but normal) inputs may lead to unexpected outcomes 

• Handling “out of the ordinary” inputs is part of the security problem, but 
what about inputs that a developer did not expect?


• e.g., inputs much larger than expected?


• If a developer has not tested against that kind of input, program may 
not do what they expect


• Does a program still perform adequately? Does the program even run 
correctly at all?


• One challenge: how do you know whether a program is behaving 
“incorrectly” when presented with an unexpected input?



input scaling 
• Unexpected (but normal) inputs may lead to unexpected outcomes 

• Handling “out of the ordinary” inputs is part of the security problem, but 
what about inputs that a developer did not expect?


• e.g., inputs much larger than expected?


• If a developer has not tested against that kind of input, program may 
not do what they expect


• Does a program still perform adequately? Does the program even run 
correctly at all?


• One challenge: how do you know whether a program is behaving 
“incorrectly” when presented with an unexpected input?



input scaling 
• Unexpected (but normal) inputs may lead to unexpected outcomes 

• Handling “out of the ordinary” inputs is part of the security problem, but 
what about inputs that a developer did not expect?


• e.g., inputs much larger than expected?


• If a developer has not tested against that kind of input, program may 
not do what they expect


• Does a program still perform adequately? Does the program even run 
correctly at all?


• One challenge: how do you know whether a program is behaving 
“incorrectly” when presented with an unexpected input?



input scaling 
• Unexpected (but normal) inputs may lead to unexpected outcomes 

• Handling “out of the ordinary” inputs is part of the security problem, but 
what about inputs that a developer did not expect?


• e.g., inputs much larger than expected?


• If a developer has not tested against that kind of input, program may 
not do what they expect


• Does a program still perform adequately? Does the program even run 
correctly at all?


• One challenge: how do you know whether a program is behaving 
“incorrectly” when presented with an unexpected input?



input scaling 
• Unexpected (but normal) inputs may lead to unexpected outcomes 

• Handling “out of the ordinary” inputs is part of the security problem, but 
what about inputs that a developer did not expect?


• e.g., inputs much larger than expected?


• If a developer has not tested against that kind of input, program may 
not do what they expect


• Does a program still perform adequately? Does the program even run 
correctly at all?


• One challenge: how do you know whether a program is behaving 
“incorrectly” when presented with an unexpected input?

Vrisha [Zhou et al, 2011], Abhranta [Zhou et al, 2013], and 
WuKong [Zhou et al, 2015] use machine learning to build models 
of program behavior as a function of input scale, and then use 
these models to determine if a program is behaving abnormally at 
large scales



many dimensions to adaptability 

• Design principle or (semi) automatic technique? 

• When should software adapt? 


• Compile time vs. start up time vs. continuous


• How do we introduce adaptability?


• Manual vs. compiler-driven vs. run-time


