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▪ Quality by Design (QbD) is a strategic approach employed in various industries, including 
pharmaceuticals, manufacturing, and product development, to ensure the consistent 
delivery of high-quality products.

▪ QbD leads to a systematic understanding of intricate relationships between CPPs and CQAs 
for the manufacture of drugs within a broad operating regime called the design space.

▪ The regulatory approval provides boundaries within which CPPs can change without further 
approval.

Introduction

Approach to design space identification

1
• Identifying the knowledge space

2

• DoE measuring the relations between CPPs and 
CQAs within the knowledge space

3

• Computational methods to determine the boundaries 
of the design space

4
• Validation experiments to confirm the design space.

Pharmaceutical 
Unit operation(s)

CPPs
Material attributes &
 process conditions

CQAs
Output variables or
product attributes
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Design Space

▪ The design space defines the range of CPPs that ensure the product's CQAs are within 
acceptable limits. 

▪ It provides flexibility for process optimization while maintaining the required quality 
attributes. 

▪ Within this design space, manufacturers can establish appropriate process controls, 
monitoring techniques, and quality assurance systems to ensure consistency and 
predictability in product performance.

Design space (DS) - ‘‘the multidimensional combination and interaction of input variables 
        (e.g., materials attributes) and process parameters that have been 
        demonstrated to assure quality.’’ – ICH Q8 guideline, 2009

Knowledge space

Design Space

NOC

-Multiple unit operations
-Integrated flowsheet, etc.

Broad methodic approaches to design space:
1. Optimization algorithms: Identify operational parameters, which ensures that the 

process acquiesces to a constraint set by performing the flexibility analysis.
2. Sampling algorithms: Limited process data and variability and can incorporate prior 

knowledge about the process to define a design space that includes uncertainty.

▪ Widely available literature uses an empirical approach for DS estimation.
▪ Empirical approach is highly favorable when model is complicated and DS analysis is 

computationally challenging.
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▪ In the presence of inexpensive comp. model, the original mechanistic model 
can be directly used to compute design space.

▪ Equations in these mechanistic models are constructed from a series of 
presumptions about the physical systems and conservation principles of 
physics and chemistry.

▪ A third paradigm exists when a trade-off is found between the flexibility to 
discover possibly unknown interactions between the process conditions 
and restricting their associations.

▪ Hybrid systems are quite helpful for systems where several contributing 
components and intricate relations are only partially understood.

▪ This paradigm looks at how the mechanistic and data-driven approaches may 
work together, utilizing information obtained from experimental data as well as 
process expertise already in place.

▪ Objective to develop a hybrid system to estimate DS for continuous 
tablet press (TP) unit operation where the effects of process 
conditions, glidants, and lubricants are investigated to achieve the 
desired tablet CQAs.

Third paradigm

Hybrid 
systems

Better 
accuracy

Better 
interpreta

bility

Extrapolat
ion & 

optimizati
on

Lower 
data

Pharmaceutical processes

Resource-intensive

Fundamentally unresolved
3rd paradigm
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Continuous tableting line

Sotax AT4

Natoli NP-400 
Tablet Press

K-Tron MT12
Micro-Screw Feeder

K-Tron and Schenck Feeders
Active ingredient: 

Acetaminophen (APAP) 
10%

Excipient: 
Microcrystalline 
Cellulose (MCC)

Glidant: 
Colloidal Silica (0-0.2%)

Lubricant: 
Magnesium Stearate 

(MgSt) 0-2%

Tablet

Product data: Weight, 
thickness, diameter, 

breaking force 

Direct compaction line at Purdue’s Pharmaceutical Continuous Manufacturing Pilot Plant (FLEX lab)

• 30 steady state experiments for Silica and 20 steady 
state experiments for MgSt were performed with Latin 
Hypercube experimental design.

• Mechanistic reduced order models to integrate lubricant 
and glidant feeding with tableting were developed

• These models can be used to create DOE to design a 
continuous operation and implement end-to-end control

Product data
• Weight
• Thickness
• Diameter
• Breaking force 

Process Variables
• Main compression 

force
• Pre-compression 

force
• Ejection force

At-line 

(5 min)

Control Variables
• Turret speed 
• Feeder speed 
• Dosing position
• Pre-compression 

thickness 
• Main compression 

thickness 

Control Variables
• Flow rate
• Mixing time
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Semi-mechanistic tablet press model

Tablet weight and production rate

In-die relative density and compaction force (modified Kawakita model)

Elastic recovery and tablet density (from Bommireddy-Gonzalez)

Tensile strength (modified Leunberger’s model)

Integration of Glidants and Lubricants:

Glidant concentration (0-0.2%) - 𝑐𝐿 , Shear strain - γ  
Lubricant concentration (0-2%) - 𝑐𝐿 , Shear strain - γ

S. Bachawala, M. Gonzalez, “Development of mechanistic reduced order models (ROMs) for glidant and 

lubricant effects in continuous manufacturing of pharmaceutical solid-dosage forms”, ESCAPE32, June 12-15, 

2022, Toulouse, France.

Compaction force decreases with increase in concentration

Elastic recovery increases with increase in concentration

Tensile strength decreases with an increase in concentration 
or mixing time 

At higher H/D the filling efficacy diminishes. As the 𝑛𝐹/𝑛𝑇 
ratio increases, the filling efficacy decreases

Does not apply 
for the glidant case
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▪ Specify the realizable bounds of the CPPs

▪ The CQAs and their desired specifications

CPP Low limit High limit

Dosing position (ℎ𝑓𝑖𝑙𝑙, 

mm)

6 11

Comp. thickness 

(ℎ𝑖𝑛−𝑑𝑖𝑒, mm)

1.5 3

Silica conc. (cl, %) 0.1 0.2

MgSt conc. (cl, %) 0.1 2

Mixing time (γ, mins.) 10 30

CQA Low High

Tablet weight (W, mg) 138 162

Compression Force (𝐹𝑚𝑎𝑖𝑛, 

kN)

2 50

Tensile strength (𝜎𝑡, MPa) 2 15

DS estimation - semi mechanistic model

❑ Deterministic DS:
• Create a fine mesh of sample points in CPP space
• Simulate each of these points to determine if the 

predicted quality of the product violates any CQA 
constraint 

❑ Probabilistic DS:
• At each CPP, run Monte Carlo simulations by 

sampling model parameter values within their 
uncertainty bounds.

Deterministic + ProbabilisticDeterministic
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Design space for glidant effects

CPP Feasible region

Dosing position 
(ℎ𝑓𝑖𝑙𝑙, mm)

6.2-6.7

Comp. thickness 
(ℎ𝑖𝑛−𝑑𝑖𝑒, mm)

1.6-2.1

Silica conc. (cL, %) 0.01-0.2

Mixing time (γ, 
mins.)

10-30

Optimal CPP (ℎ𝑓𝑖𝑙𝑙, ℎ𝑖𝑛−𝑑𝑖𝑒, cL, γ) – (6.28, 1.82, 0.194, 28)  

Nominal DS
>75% prob. DS
50-75% prob. DS

1.5 -> -> -> -> 2.3

6
.1

 ->
 ->

 ->
 ->

 7
.0
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Design space for lubricant effects

Nominal DS
>75% prob. DS
50-75% prob. DS

▪ Maximum DS contours are minimal with nominal values

▪ When model uncertainty is included, the mechanistic TP model fails 
to generate any significant DS.

▪ Higher model parameters; high non-linearity; high model 
uncertainty; lower experimental samples.

▪ For some powder blends, more experimental samples might be 
needed to produce quality products.

▪ Limited resources and complex machinery is a challenge.

▪ In such cases, a data-driven alternative is the best choice for model 
development and validation.
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Multi-Response Surface modeling

▪ RSM is a statistical technique that relates controllable variables to response(s) through an empirical 
model that is not available or is very complex.

▪ Generates knowledge in the experimental domain of interest

▪ Suggests sequential strategies for conducting experiments with different alternatives based on the results 
(Model-based DoE)

▪ Allows decision-making under uncertain conditions.

𝒚 =  𝜷𝟎 + 𝜷𝟏𝒙𝟏 +  𝜷𝟐𝒙𝟐 +  𝜷𝟑𝒙𝟏
𝟐 +  𝜷𝟒𝒙𝟏𝒙𝟐 +  …

▪ MRS techniques

▪ Dimension reduction – the absence of correlation among multiple responses

▪ Loss function – does not consider process parameter fluctuations, model parameter uncertainty

▪ Posterior predictive function – does not consider model parameter uncertainty

▪ OLS, WLS for each response.

▪ Such models fail to perform when the responses are correlated and precise estimates are needed.
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Seemingly Unrelated Regression (SUR) Models
▪ Seemingly unrelated regression (SUR) is very useful when response variables in a multi-response RSM are 

correlated.

▪ SUR yields more precise estimates when response correlation exists.

▪ Multi response experiments:

𝑦𝑖 =  𝑿𝑖𝜷𝑖 +  𝜀𝑖  , 𝑖 = 1, 2, … , 𝑟      (1)
𝑦𝑖 =  𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 +  𝛽3𝑥1

2 +  𝛽4𝑥1𝑥2 +  …

𝑦𝑖 is an n×1 vector of observations, 𝑿𝑖  is an n×pi matrix of known functions, 𝜷𝑖  is a pi×1 vector of unknown 
parameters, and 𝜀𝑖  is a random error vector on ith response.

▪ In SUR, it is assumed that errors for any individual model have const. variance but the errors in different models 

are correlated. (E(𝜀𝑖) = 0;  Var(𝜀𝑖) = 𝜎𝑖𝑖𝐼𝑛;  Cov(𝜀𝑖, 𝜀𝑗) = 𝜎𝑖𝑗𝐼𝑛)

▪ The r polynomial regression models can be converted to a matrix form 𝒀 = 𝑿𝜷 +  𝜺       (2)

Y = [𝑦1
′ : 𝑦2

′ :…: 𝑦𝑟
′]′ ; 𝛽 = [𝛽1

′: 𝛽2
′ :…: 𝛽𝑟

′]′ ; 𝜀 = [𝜀1
′ : 𝜀2

′ :…: 𝜀𝑟
′ ]′ ; X is the block diagonal matrix 

𝑋1 0 0
0 𝑋2 0
0 0 𝑋𝑟

FGLS:  𝛽𝑒𝑠𝑡 = [𝑋′ Σ𝑒𝑠𝑡
−1 ⊗ 𝐼𝑛 𝑋]−1 𝑋′ Σ𝑒𝑠𝑡

−1 ⊗ 𝐼𝑛 𝑌 and 

            Σ𝑒𝑠𝑡 = 𝜎𝑖𝑗 = 
𝑌𝑖 −𝑋𝑖𝛽𝑖

𝑇 𝑌𝑗 −𝑋𝑗𝛽𝑗

𝑛
, i, j = 1,2, … r              (3)

Shah, H.K. et al., 2004. Response surface modeling and optimization in multiresponse experiments

using seemingly unrelated regressions. Quality Engineering, 16(3), pp.387-397. 11



RSM methodology

1. The RSM is fitted for each response variable to determine the 
primary form of the response model

i. The primary form (polynomial complexity) is obtained by 
splitting the data into train and validation sets and the 
complexity (degree) which yields minimum RMSE across both 
data sets is the required form. (RMSE vs. complexity plot)

ii. The multivariate multiple linear regression model is obtained 
once the complexity is defined. (A degree of 2 is considered 
optimal)

2. OLS is used to compute initial parameter estimates and 
residuals, and the quality of fit is evaluated.

3. The statistical significance analysis of parameter estimates is 
done based on a 5% significance level.

4. The estimation of 𝛽 and Σ for each response is obtained by 
fitting the models through SUR.

▪ Specify the realizable bounds of the CPPs

▪ The CQAs and their desired specifications

CPP Low limit High limit

Dosing position (ℎ𝑓𝑖𝑙𝑙, 

mm)

6 11

Turret speed (nT, 

rpm)

10 20

MgSt conc. (cL, %) 0.1 2

Mixing time (γ, mins.) 10 30

CQA Low High

Tablet weight (W, mg) 138 162

Compression Force (𝐹𝑚𝑎𝑖𝑛, 

kN)

2 50

Tensile strength (𝜎𝑡, MPa) 2 15
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SUR model development
Polynomial complexity

Final SUR model
nT (𝑥1), dos. pos. (𝑥2), cL (𝑥3), shear time (𝑥4) 

Lubricants SUR model: 13 (27*) params
Yweigh = f (𝑥1, 𝑥1

2, 𝑥1𝑥3, 𝑥2
2, 𝑥3

2, 𝑥3𝑥4)
Ycf = f (C, 𝑥1, 𝑥2, 𝑥1𝑥2)
Ytens   = f (𝑥1, 𝑥1

2, 𝑥3
2)

PC = 2

Responses correlation

Predicted vs. observed values
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RSM - Design space for lubricant effects

Nominal DS
>75% prob. DS
50-75% prob. DS

18 -> -> -> -> 20

8
.7

5
 ->

 ->
 ->

 ->
 1

0
.0

CPP Feasible region

Dosing position (ℎ𝑓𝑖𝑙𝑙, 

mm)

8.5-9.7

Turret speed (nT, 
rpm)

18-19.5

MgSt conc. (cL, %) 0.3-0.8

Mixing time (γ, mins.) 10-30

Optimal CPP (ℎ𝑓𝑖𝑙𝑙, nT, cL, γ) = (9.1, 19, 0.4, 11)  
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A hybrid system

Glidants-based tablet DS

▪ 50 tablets were manufactured for two separate blends 
(cL = 0.1 & 0.2%, γ = 20 mins)

▪ CPP were selected from the extracted DS

Lubricant-based tablet DS

▪ 50 tablets were manufactured for two separate blends 
(cL = 0.75 & 0.5%, γ = 15 mins)

▪ CPP were selected from the extracted DS

▪ From the design space regions generated by the hybrid system, the two additives affect the blend properties in a 
significantly different manner.

▪ Experimental investigation requires different CPPs that would result in desirable CQAs

Tablet tester

Run CPPs
𝒉𝒇𝒊𝒍𝒍, 𝒉𝒊𝒏−𝒅𝒊𝒆,

CQAs
W, 𝑭𝒎𝒂𝒊𝒏, 𝝈𝒕

Fail prob 
(%)

1 6.25, 1.7 143, 3.4, 2.2 1.73

2 6.45, 1.75 146, 3.5, 2.1 1.75

Dos. pos. (𝒉𝒇𝒊𝒍𝒍) Turret speed (nT) CQAs
(W, 𝑭𝒎𝒂𝒊𝒏, 𝝈𝒕)

9.4 18 215, 12.3, 3.3

8.5 18 199, 7.4, 2.2

8.0 18 188, 5.4, 1.67

▪ SUR model for lubricants can be improvised by building model-based DoE and/or change of TP tooling.

▪ Nonetheless, the SUR-based model results in meaningful DS with significant overlap with experimental tablet properties.

▪ This is a significant improvement from the semi-mechanistic TP lubricant model.
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Summary
▪ A hybrid system for design space estimation is described where lubricant and glidant effects are 

integrated into the tableting process.

▪ The system can be useful when a mechanistic/data-driven model alone is insufficient to describe the 
process reliability.

▪  The mechanistic model can help in the glidants integration whereas RSM approach can be useful for 
integrating lubricant effects into the continuous tableting process.

▪ When do you need hybrid models?

▪ Improve the quality of data-driven alternatives with SUR model-based DoE.

▪ Develop computationally efficient Bayesian estimation methods.

Future work



Thank You

CryPTSYS


	Slide 1: A hybrid system for design space estimation of the continuous tableting process
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Design Space
	Slide 5: Third paradigm
	Slide 6: Continuous tableting line
	Slide 7: Semi-mechanistic tablet press model
	Slide 8: DS estimation - semi mechanistic model
	Slide 9: Design space for glidant effects
	Slide 10: Design space for lubricant effects
	Slide 11: Multi-Response Surface modeling
	Slide 12: Seemingly Unrelated Regression (SUR) Models
	Slide 13: RSM methodology
	Slide 14: SUR model development
	Slide 15: RSM - Design space for lubricant effects
	Slide 16: A hybrid system
	Slide 17: Summary
	Slide 18: Thank You

