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Motivation

Disjunctive cuts can be strong but often expensive. Can we retain their
strength while reducing their cost?

For series of similar MILPs, we can accomplish both through parameterization!

z
Figure 1: (Left) given P1 and a disjunction x1 ≤ 1 ∨ x1 ≥ 2, we parameterize disjunctive
cut x2 ≤ 1 to generate (Right) x2 ≤ 1.5, which is valid for the disjunction applied to P2.
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Further Motivation and Outline

Disjunctive cuts improve MILP solvers’ ability to close optimality gap
compared to default cutting planes [1].

But, they are inconsistent in improving solver run time [1].

Parameterization significantly reduces disjunctive cut generation time [5].

For series of MILPs sharing the same variables and number of constraints,
this reduction can improve solvers’ overall performance [5].

Applications within MIP are more common than one might think!

Branch-and-Price
Lagrangian Dual Decomposition
Multi-Objective
Bilevel

In this presentation, we detail:

how to parameterize disjunctive cuts and expectations on effectiveness

empirical impact parameterized disjunctive cuts have on solving MILPs
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Input

We define the following:

Pk := {x ∈ Rn : Akx ≥ bk}.
Sk := {x ∈ Pk : xj ∈ Z ∀ j ∈ I}.
X t := {x ∈ Rn : Dt ≥ Dt

0}.

Akt :=

[
Ak

Dt

]
and bkt :=

[
bk

Dt
0

]
.

Qkt := Pk ∩ X t

= {x ∈ Rn : Aktx ≥ bkt}.
x̄kt := argminx∈Qkt ckx .

N̄kt indexes constraints tight at x̄kt .

C̄kt := {x ∈ Rn : Akt
N̄kt ,∗x ≥ bkt}

max
x∈Rn

ckx

Akx ≥ bk

xj ∈ Z ∀j ∈ I

(IPk)

Ak ∈ Rq×n and bk ∈ Rq for
all k ∈ K .

{X t}t∈T is a disjunction.

{X t}t∈T is valid for a set
Sk ∈ Rn if Sk ⊆

⋃
t∈T X t .

C̄kt is an optimal basis
cone.
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How to Generate Disjunctive Cuts

We can generate a V-polyhedral disjunctive cut (VPC) by solving the Point-Ray
LP (PRLP):

Figure 2: Solving PRLP for IP1 with

w =

[
0
−1

]
yields the VPC x2 ≤ 1.

max
(α,β)∈Rn+1

αTw

αTp ≥ β ∀p ∈ ∪t∈TEkt

αTr ≥ 0 ∀r ∈ ∪t∈TRkt

(PRLP)

For all k ∈ K and t ∈ T :

Ekt := extreme point of C̄kt .

Rkt := extreme rays of C̄kt .
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How to Find Farkas Multipliers

Lemma 1

Let (α, β) be a valid cut for IPk and {X t}t∈T be a disjunction. Then there exists
v t such that

αT = v tAkt

β ≤ v tbkt

v t ≥ 0

 for all t ∈ T . [3]

We refer to {v t}t∈T as Farkas multipliers.

Lemma 2

Let k ∈ K and {X t}t∈T be a disjunction. Let t ∈ T and αT x ≥ β be valid for all
x ∈ C̄kt . Then v t

i , the Farkas multiplier on constraint i , is calculated:

αT(Akt
N̄kt ,∗)

−1
∗,h, for i ∈ N̄kt and h such that N̄kt

h = i .

0, otherwise. [2]
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How to Parameterize Disjunctive Cuts

Theorem 3

Let {v t}t∈T be a set of nonnegative Farkas multipliers for a disjunction {X t}t∈T valid
for Zn. For ℓ ∈ K and for all j ∈ [n], let αj := max

t∈T
{v tAℓt

.j } and β := min
t∈T

{v tbℓt}. Then

αT x ≥ β is valid for all x ∈ Sℓ. [5]

Figure 3: Generate VPC x2 ≤ 1 for IP1

and calculate Farkas multipliers {v 1, v 2}.

z
Figure 4: Apply Theorem 3 to IP3 and
{v 1, v 2}, generating x1 − 9x2 ≥ −10.
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Expectation Setting

Definition 4

The pair (x , {X t}t∈T ) is a certificate for IPk when min
t∈T

ck x̄kt = ckx .

Definition 5

The Warm-Started MILP takes as inputs IPk , IPℓ, and a certificate (x , {X t}t∈T )
for IPk such that exactly one of the following statements is true:

ck ̸= cℓ, or

there exists exactly one i ∈ [q] such that Aℓ
i· ̸= Ak

i· or b
ℓ
i ̸= bki .

It returns a certificate (x̄ , {X̄ }t∈T̄ ) for IPℓ if Sℓ ̸= ∅ and null otherwise.

Theorem 6

The Warm-Started MILP is NP-Hard. [5]

Translation: No warm-start can improve the complexity class of solving MILPs.
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Expectation Setting

Theorem 7

Let {X t}t∈T be a disjunction and ϵ > 0. Let IPk and IPℓ be such that

mint∈T minx∈Qkt{ck x̄kt} > cℓx̄k

Aℓ = Ak + eiA,jAϵ, b
ℓ = bk + eibϵ or b

ℓ = ck + ejc ϵ.

Then there exists A ∈ Rq×n, b ∈ Rq, c ∈ Rn, (iA, jA) ∈ [q]× [n], ib ∈ [q],
and jc ∈ [n] such that mint∈T minx∈Qℓt{ck x̄ℓt} = cℓx̄ℓ. [5]

Translation: Parameterized disjunctive cuts are not guaranteed to
improve disjunctive dual bound.
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Experimental Setup

We run an experiment as follows:

Create a base test set from 104 presolved MIPLIB 2017 instances with at
most 5000 variables and 5000 constraints.

Create an experimental test set of 5 random perturbations of objective,
RHS, and/or matrix for each instance in the base set.

Use VPCs [1] as the disjunctive cut.

Replications vary by the following parameters:

4, 16, or 64 term disjunctions to generate VPCs
0.5 or 2 degrees of random perturbation
run with no VPCs, VPCs via [1], or parameterized VPCs.

Solve the experiment set for each combination of parameters using Gurobi
10.
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Experimental Results (Root Node)

We compare the ability to close the optimality gap at the root node:

degree terms
Average Root Optimality Gap Closed
No VPCs VPCs via [1] Param. VPCs

0.5
4 61.87% 62.35% 62.30%
16 61.87% 62.96% 62.82%
64 61.87% 63.55% 63.35%

2.0
4 63.46% 63.45% 63.36%
16 63.46% 63.76% 63.53%
64 63.46% 64.73% 63.91%

Parameterization maintains some of [1]’s ability to close additional root optimality
gap with disjunctive cuts as compared to Gurobi’s default cuts.
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Experimental Results (Root Node)

We compare the time (in seconds) to process the root node:

degree terms
Average Root Node Processing Time
No VPCs VPCs via [1] Param. VPCs

0.5
4 0.929 10.480 0.999
16 0.936 29.483 1.394
64 0.921 56.614 2.185

2.0
4 0.892 4.293 0.927
16 0.870 17.576 1.394
64 0.861 48.773 2.295

Parameterization significantly reduces the time to generate disjunctive cuts as
compared to [1].
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Experimental Results (Total Solve)

Figure 5: A significant portion of our experiment set sees performance improvements
when parameterized VPCs are added to Gurobi’s cut generators.

Figure 6: Time improvements appear to be random when fixing degree of perturbation,
size of disjunction, and instance.
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Future Directions and Conclusion

Parameterization:

Reduces the cost of generating
disjunctive cuts vs. [1].

Often increases strength of root
default cuts.

Improves solver performance overall
for many instances.

Next Steps:

Improve efficiency of
parameterization.

Understand when parameterized
disjunctive cuts help solver
performance.

Parameterizing disjunctive cuts can improve a MILP solver’s performance, but
under what conditions remains an open question.
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How to Tighten Parametric Disjunctive Cuts

Lemma 8

Let k, ℓ ∈ [K ] such that Ak = Aℓ. Let {X t}t∈T be a disjunction and {v t}t∈T be
nonnegative Farkas multipliers derived while {X t}t∈T applied to IPk . Let (α, β) be the
result of applying Theorem 3 to {X t}t∈T , {v t}t∈T , and IPℓ. Then (α, β) is tight for
cl conv(∪t∈TQℓt). [5]

Theorem 9

Let k, ℓ ∈ [K ]. Let {X t}t∈T be a disjunction and {v t}t∈T be nonnegative Farkas
multipliers derived while {X t}t∈T applied to IPk . Let (ᾱ, β̄) be the result of applying
Theorem 3 to {X t}t∈T , {v t}t∈T , and IPℓ. If A

k ̸= Aℓ, let:

{v̄ t}t∈T be the Farkas multipliers derived for (ᾱ, β̄) [2]

(α, β) be the result of applying Theorem 3 to {X t}t∈T , {v̄ t}t∈T , and IPℓ

Else, let:

(α, β) = (ᾱ, β̄)

Then (α, β) is tight for cl conv(∪t∈TQℓt). [5]
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How to Tighten Parametric Disjunctive Cuts

Visually, the application of Theorem 9 looks like the following:

Figure 7: Apply Theorem 3 to IP3 and
{v 1, v 2}, generating x1 − 9x2 ≥ −10.

z
Figure 8: Calculate {v̄ t}t∈T and reapply
Theorem 3, generating x1 − 9x2 ≥ −8.9.

Parameterizing x2 ≤ 1 with Theorem 9 yields x1 − 9x2 ≥ −8.9, a tight cut for the
convex hull of the disjunction applied to IP3.
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Finding a Basis for Infeasible Disjunctive Terms

Figure 9: As disjunctions and degree of perturbation increase, so does the number of
originally infeasible terms that become feasible.

Problem:

Calculating v t relies on
Qkt ̸= ∅.

When Qkt = ∅, we
currently set v t = 0.

Weakens parameterization
when Qℓt ̸= ∅.

Possible solutions include using the basis from:

Pivoting the last branching constraint into
a feasible basis from the parent node.

The solver’s Farkas proof of infeasibility.

x̄ℓt for ℓ ∈ K such that Qℓt ̸= ∅.
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Shrinking PRLP

Figure 10: 22% of PRLPs fail due to hitting their time limits.

Problem:

Currently, PRLP solves
with all C̄kt ̸= ∅.

Strong branching fixes
create disjunctions larger
than specified.

This can make PRLP
intractible.

Proposed solution:

Solve PRLP with only C̄kt representing
unprocessed nodes in solver.

Apply Lemma 2 to remaining C̄kt ̸= ∅ to
calculate their farkas multipliers.

Risks weakening parameterization.

Kelley, Kazachkov, Ralphs Parametric Disjunctive Cuts October 11, 2024 19 / 27



Pruning the Disjunction before Parameterization

Definition 10

An optimality inequality for MILP instance IPk is a pair (α, β) ∈ Rn × R such
that αTx∗ ≥ β for all x∗ ∈ arg IPk .

Theorem 11

Let k, ℓ ∈ [K ]. Let {X t}t∈T be a valid disjunction and {v t}t∈T be farkas
multipliers for an inequality (ᾱ, β̄) valid for IPk . Let T

′ = {t ∈ T : cℓx̄ℓt ≤ cℓx∗}
such that x∗ ∈ arg IPℓ. Then (α, β) output from Theorem 9 applied to IPℓ,
{X t}t∈T ′ , and {v t}t∈T ′ is an optimality inequality for IPℓ. [5]

Translation: Parameterized disjunctive cuts may be tightened by ignoring
disjunctive terms that are proven to not contain an optimal solution.
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Enabling Cutting Planes While Generating Disjunctions

Figure 11: Could we close more root optimality gap with a ”better” disjunction?

Problem:

Currently, default and
disjunctive cuts refine the
same root relaxation.

Perhaps both have large
overlaps in contributions.

Maybe we could close more
root optimality gap by
reducing this overlap.

Proposed solution:

Turn on cutting planes while generating a
disjunction.

Such disjunctions refine relaxation
accounting for cuts at root.

Go back and remove cuts from disjunction
when generation complete.
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Learning When Parametric Disjunctive Cuts Help

Figure 12: Intra-instance variance does not appear to explain Figure 6’s inter-instance
variance regarding run time.
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Learning When Parametric Disjunctive Cuts Help

Figure 13: There is no relationship between the improvements to root optimality gap
closed and run time.
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Learning When Parametric Disjunctive Cuts Help

Goal: Determine when parametric disjunctive cuts improve run time.

Hypothesis: Not all perturbations of the same degree are created equal.

Perhaps we can identify when our parameterization helps by collecting the
following:

Number of pivots away new solutions are from warm start in root LP
relaxation

In disjunctive terms for which cuts are tight:

Number of pivots away new solutions are from warm start
Whether the optimal basis for each term includes the branching
constraint that created it

Open to suggestions (:
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Comparing to Warm-Starting the Node Queue

Goal: Determine when parametric disjunctive cuts improve run time more than
warm-starting with a previous disjunction.

Branch-and-Cut warm-starts include initial primal solutions, pseudo costs,
cuts, and disjunction.

Want to compare warm-starting with:

Parameterized disjunctive cuts.
Previous terminal disjunctions. [4]

Latter can process many unnecessary nodes.

Perhaps our parameterization can be more effective for some problems since
we only work with the root node.
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Questions

Are there any changes you’d like to see?
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