# Warm Starting of Mixed Integer Linear Optimization Problems via Parametric Disjunctive Cuts

Shannon Kelley, Aleks Kazachkov, Ted Ralphs

October 11, 2024

### Overview

- Background
- Theory
- Computation
- Future Directions and Conclusion
  - Improving Efficiency
  - Determining When to Use

### Motivation

# Disjunctive cuts can be strong but often expensive. Can we retain their strength while reducing their cost?

For series of similar MILPs, we can accomplish both through parameterization!



Figure 1: (Left) given  $\mathcal{P}^1$  and a disjunction  $x_1 \leq 1 \lor x_1 \geq 2$ , we parameterize disjunctive cut  $x_2 \leq 1$  to generate (Right)  $x_2 \leq 1.5$ , which is valid for the disjunction applied to  $\mathcal{P}^2$ .

### Further Motivation and Outline

- Disjunctive cuts improve MILP solvers' ability to close optimality gap compared to default cutting planes [1].
- But, they are inconsistent in improving solver run time [1].
- Parameterization significantly reduces disjunctive cut generation time [5].
- For series of MILPs sharing the same variables and number of constraints, this reduction can improve solvers' overall performance [5].
- Applications within MIP are more common than one might think!
  - Branch-and-Price
  - Lagrangian Dual Decomposition
  - Multi-Objective
  - Bilevel

#### In this presentation, we detail:

- how to parameterize disjunctive cuts and expectations on effectiveness
- empirical impact parameterized disjunctive cuts have on solving MILPs

### Input

### We define the following:

$$\bullet \ \mathcal{P}^k := \{ x \in \mathbb{R}^n : A^k x \ge b^k \}.$$

• 
$$S^k := \{x \in \mathcal{P}^k : x_j \in \mathbb{Z} \ \forall \ j \in I\}.$$

$$\bullet \ \mathcal{X}^t := \{ x \in \mathbb{R}^n : D^t \ge D_0^t \}.$$

• 
$$A^{kt} := \begin{bmatrix} A^k \\ D^t \end{bmatrix}$$
 and  $b^{kt} := \begin{bmatrix} b^k \\ D_0^t \end{bmatrix}$ .

• 
$$Q^{kt} := \mathcal{P}^k \cap \mathcal{X}^t$$
  
=  $\{x \in \mathbb{R}^n : A^{kt}x \ge b^{kt}\}.$ 

- $\bar{x}^{kt} := \operatorname{arg\,min}_{x \in \mathcal{Q}^{kt}} c^k x$ .
- $\bar{N}^{kt}$  indexes constraints tight at  $\bar{x}^{kt}$ .

$$\bullet \ \bar{\mathcal{C}}^{kt} := \{x \in \mathbb{R}^n : A^{kt}_{\bar{N}^{kt},*} x \ge b^{kt}\}$$

$$egin{array}{ll} \max _{x \in \mathbb{R}^n} & c^k x \ & A^k x \geq b^k \ & x_j \in \mathbb{Z} & orall j \in \mathcal{I} \end{array}$$

- $A^k \in \mathbb{R}^{q \times n}$  and  $b^k \in \mathbb{R}^q$  for all  $k \in K$ .
- $\{\mathcal{X}^t\}_{t\in\mathcal{T}}$  is a disjunction.
- $\{\mathcal{X}^t\}_{t\in\mathcal{T}}$  is **valid** for a set  $\mathcal{S}^k \in \mathbb{R}^n$  if  $\mathcal{S}^k \subseteq \bigcup_{t\in\mathcal{T}} \mathcal{X}^t$ .
- $\bar{C}^{kt}$  is an optimal basis cone.

### How to Generate Disjunctive Cuts

We can generate a V-polyhedral disjunctive cut (VPC) by solving the Point-Ray LP (PRLP):



$$\max_{(\alpha,\beta) \in \mathbb{R}^{n+1}} \alpha^{\mathsf{T}} w$$

$$\alpha^{\mathsf{T}} p \ge \beta \quad \forall p \in \cup_{t \in \mathcal{T}} \mathcal{E}^{kt}$$

$$\alpha^{\mathsf{T}} r \ge 0 \quad \forall r \in \cup_{t \in \mathcal{T}} \mathcal{R}^{kt}$$
(PRLP)

For all  $k \in K$  and  $t \in T$ :

- $\mathcal{E}^{kt}$  := extreme point of  $\bar{\mathcal{C}}^{kt}$ .
- $\mathcal{R}^{kt}$  := extreme rays of  $\bar{\mathcal{C}}^{kt}$ .

Figure 2: Solving PRLP for  $IP_1$  with  $w = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$  yields the VPC  $x_2 \le 1$ .

# How to Find Farkas Multipliers

#### Lemma 1

Let  $(\alpha, \beta)$  be a valid cut for  $IP_k$  and  $\{\mathcal{X}^t\}_{t \in T}$  be a disjunction. Then there exists  $v^t$  such that

We refer to  $\{v^t\}_{t\in T}$  as **Farkas multipliers**.

#### Lemma 2

Let  $k \in K$  and  $\{\mathcal{X}^t\}_{t \in T}$  be a disjunction. Let  $t \in T$  and  $\alpha^T x \geq \beta$  be valid for all  $x \in \bar{\mathcal{C}}^{kt}$ . Then  $v_t^t$ , the Farkas multiplier on constraint i, is calculated:

- $\alpha^{\mathsf{T}}(A^{kt}_{\bar{N}^{kt},*})^{-1}_{*,h}$ , for  $i \in \bar{N}^{kt}$  and h such that  $\bar{N}^{kt}_h = i$ .
- 0, otherwise. [2]

# How to Parameterize Disjunctive Cuts

#### Theorem 3

Let  $\{v^t\}_{t\in T}$  be a set of nonnegative Farkas multipliers for a disjunction  $\{\mathcal{X}^t\}_{t\in T}$  valid for  $\mathbb{Z}^n$ . For  $\ell\in K$  and for all  $j\in [n]$ , let  $\alpha_j:=\max_{t\in T}\{v^tA_{\cdot,j}^{\ell t}\}$  and  $\beta:=\min_{t\in T}\{v^tb^{\ell t}\}$ . Then  $\alpha^Tx\geq \beta$  is valid for all  $x\in \mathcal{S}^\ell$ . [5]



Figure 3: Generate VPC  $x_2 \le 1$  for  $IP_1$  and calculate Farkas multipliers  $\{v^1, v^2\}$ .

Figure 4: Apply Theorem 3 to  $IP_3$  and  $\{v^1, v^2\}$ , generating  $x_1 - 9x_2 \ge -10$ .

# **Expectation Setting**

#### Definition 4

The pair  $(x, \{\mathcal{X}^t\}_{t \in T})$  is a *certificate* for  $IP_k$  when  $\min_{t \in T} c^k \bar{x}^{kt} = c^k x$ .

#### Definition 5

The Warm-Started MILP takes as inputs  $IP_k$ ,  $IP_\ell$ , and a certificate  $(x, \{\mathcal{X}^t\}_{t \in \mathcal{T}})$  for  $IP_k$  such that exactly one of the following statements is true:

- $c^k \neq c^\ell$ , or
- there exists exactly one  $i \in [q]$  such that  $A_{i.}^{\ell} \neq A_{i.}^{k}$  or  $b_{i}^{\ell} \neq b_{i}^{k}$ .

It returns a certificate  $(\bar{x}, \{\bar{\mathcal{X}}\}_{t \in \bar{T}})$  for  $IP_{\ell}$  if  $\mathcal{S}^{\ell} \neq \emptyset$  and null otherwise.

#### Theorem 6

The Warm-Started MILP is NP-Hard. [5]

Translation: No warm-start can improve the complexity class of solving MILPs.

## **Expectation Setting**

#### Theorem 7

Let  $\{\mathcal{X}^t\}_{t\in\mathcal{T}}$  be a disjunction and  $\epsilon>0$ . Let  $IP_k$  and  $IP_\ell$  be such that

- $\min_{t \in T} \min_{x \in \mathcal{Q}^{kt}} \{c^k \bar{x}^{kt}\} > c^\ell \bar{x}^k$
- $A^{\ell}=A^k+e_{i_A,j_A}\epsilon$ ,  $b^{\ell}=b^k+e_{i_b}\epsilon$  or  $b^{\ell}=c^k+e_{j_c}\epsilon$ .

Then there exists  $A \in \mathbb{R}^{q \times n}$ ,  $b \in \mathbb{R}^q$ ,  $c \in \mathbb{R}^n$ ,  $(i_A, j_A) \in [q] \times [n]$ ,  $i_b \in [q]$ , and  $j_c \in [n]$  such that  $\min_{t \in T} \min_{x \in \mathcal{Q}^{\ell t}} \{c^k \bar{x}^{\ell t}\} = c^\ell \bar{x}^\ell$ . [5]

**Translation**: Parameterized disjunctive cuts are not guaranteed to improve disjunctive dual bound.

### **Experimental Setup**

#### We run an experiment as follows:

- Create a base test set from 104 presolved MIPLIB 2017 instances with at most 5000 variables and 5000 constraints.
- Create an experimental test set of 5 random perturbations of objective, RHS, and/or matrix for each instance in the base set.
- Use VPCs [1] as the disjunctive cut.
- Replications vary by the following parameters:
  - 4, 16, or 64 term disjunctions to generate VPCs
  - 0.5 or 2 degrees of random perturbation
  - run with no VPCs, VPCs via [1], or parameterized VPCs.
- Solve the experiment set for each combination of parameters using Gurobi 10.

## Experimental Results (Root Node)

We compare the ability to close the optimality gap at the root node:

| dograa | + 0 4 40 0 | Average Root Optimality Gap Closed |              |             |  |  |  |
|--------|------------|------------------------------------|--------------|-------------|--|--|--|
| degree | terms      | No VPCs                            | VPCs via [1] | Param. VPCs |  |  |  |
|        | 4          | 61.87%                             | 62.35%       | 62.30%      |  |  |  |
| 0.5    | 16         | 61.87%                             | 62.96%       | 62.82%      |  |  |  |
|        | 64         | 61.87%                             | 63.55%       | 63.35%      |  |  |  |
| 2.0    | 4          | 63.46%                             | 63.45%       | 63.36%      |  |  |  |
|        | 16         | 63.46%                             | 63.76%       | 63.53%      |  |  |  |
|        | 64         | 63.46%                             | 64.73%       | 63.91%      |  |  |  |

Parameterization maintains some of [1]'s ability to close additional root optimality gap with disjunctive cuts as compared to Gurobi's default cuts.

## Experimental Results (Root Node)

We compare the time (in seconds) to process the root node:

| degree | terms | Average Root Node Processing Time |              |             |  |  |  |
|--------|-------|-----------------------------------|--------------|-------------|--|--|--|
|        |       | No VPCs                           | VPCs via [1] | Param. VPCs |  |  |  |
|        | 4     | 0.929                             | 10.480       | 0.999       |  |  |  |
| 0.5    | 16    | 0.936                             | 29.483       | 1.394       |  |  |  |
|        | 64    | 0.921                             | 56.614       | 2.185       |  |  |  |
| 2.0    | 4     | 0.892                             | 4.293        | 0.927       |  |  |  |
|        | 16    | 0.870                             | 17.576       | 1.394       |  |  |  |
|        | 64    | 0.861                             | 48.773       | 2.295       |  |  |  |

Parameterization significantly reduces the time to generate disjunctive cuts as compared to [1].

# Experimental Results (Total Solve)



Figure 5: A significant portion of our experiment set sees performance improvements when parameterized VPCs are added to Gurobi's cut generators.



Figure 6: Time improvements appear to be random when fixing degree of perturbation, size of disjunction, and instance.

### Future Directions and Conclusion

#### Parameterization:

- Reduces the cost of generating disjunctive cuts vs. [1].
- Often increases strength of root default cuts.
- Improves solver performance overall for many instances.

#### Next Steps:

- Improve efficiency of parameterization.
- Understand when parameterized disjunctive cuts help solver performance.

Parameterizing disjunctive cuts can improve a MILP solver's performance, but under what conditions remains an open question.

## How to Tighten Parametric Disjunctive Cuts

#### Lemma 8

Let  $k, \ell \in [K]$  such that  $A^k = A^\ell$ . Let  $\{\mathcal{X}^t\}_{t \in T}$  be a disjunction and  $\{v^t\}_{t \in T}$  be nonnegative Farkas multipliers derived while  $\{\mathcal{X}^t\}_{t \in T}$  applied to  $IP_k$ . Let  $(\alpha, \beta)$  be the result of applying Theorem 3 to  $\{\mathcal{X}^t\}_{t \in T}$ ,  $\{v^t\}_{t \in T}$ , and  $IP_\ell$ . Then  $(\alpha, \beta)$  is tight for  $cl conv(\cup_{t \in T} \mathcal{Q}^{\ell t})$ . [5]

#### Theorem 9

Let  $k, \ell \in [K]$ . Let  $\{\mathcal{X}^t\}_{t \in T}$  be a disjunction and  $\{v^t\}_{t \in T}$  be nonnegative Farkas multipliers derived while  $\{\mathcal{X}^t\}_{t \in T}$  applied to  $IP_k$ . Let  $(\bar{\alpha}, \bar{\beta})$  be the result of applying Theorem 3 to  $\{\mathcal{X}^t\}_{t \in T}$ ,  $\{v^t\}_{t \in T}$ , and  $IP_\ell$ . If  $A^k \neq A^\ell$ , let:

- $\{\bar{v}^t\}_{t\in T}$  be the Farkas multipliers derived for  $(\bar{\alpha}, \bar{\beta})$  [2]
- $(\alpha, \beta)$  be the result of applying Theorem 3 to  $\{\mathcal{X}^t\}_{t \in T}$ ,  $\{\bar{\mathbf{v}}^t\}_{t \in T}$ , and  $IP_\ell$

#### Else, let:

•  $(\alpha, \beta) = (\bar{\alpha}, \bar{\beta})$ 

Then  $(\alpha, \beta)$  is tight for cl conv $(\cup_{t \in T} \mathcal{Q}^{\ell t})$ . [5]

### How to Tighten Parametric Disjunctive Cuts

Visually, the application of Theorem 9 looks like the following:



Figure 7: Apply Theorem 3 to  $IP_3$  and  $\{v^1, v^2\}$ , generating  $x_1 - 9x_2 \ge -10$ .

Figure 8: Calculate  $\{\bar{v}^t\}_{t\in\mathcal{T}}$  and reapply Theorem 3, generating  $x_1-9x_2\geq -8.9$ .

Parameterizing  $x_2 \le 1$  with Theorem 9 yields  $x_1 - 9x_2 \ge -8.9$ , a **tight** cut for the convex hull of the disjunction applied to  $IP_3$ .

### Finding a Basis for Infeasible Disjunctive Terms

|        |       | Average Root Optimality Gap Closed |              | Average Root Node Processing Time |         |              | Average % Perturbed |                         |
|--------|-------|------------------------------------|--------------|-----------------------------------|---------|--------------|---------------------|-------------------------|
| Degree | Terms | No VPCs                            | VPCs via [1] | Param. VPCs                       | No VPCs | VPCs via [1] | Param. VPCs         | Terms Becoming Feasible |
| 0.5    | 4     | 61.87%                             | 62.35%       | 62.30%                            | 0.929   | 10.480       | 0.999               | 0.000%                  |
|        | 16    | 61.87%                             | 62.96%       | 62.82%                            | 0.936   | 29.483       | 1.394               | 0.102%                  |
|        | 64    | 61.87%                             | 63.55%       | 63.35%                            | 0.921   | 56.614       | 2.185               | 0.201%                  |
| 2      | 4     | 63.46%                             | 63.45%       | 63.36%                            | 0.892   | 4.293        | 0.927               | 0.000%                  |
|        | 16    | 63.46%                             | 63.76%       | 63.53%                            | 0.870   | 17.576       | 1.394               | 0.558%                  |
|        | 64    | 63.46%                             | 64.73%       | 63.91%                            | 0.861   | 48.773       | 2.295               | 0.596%                  |

Figure 9: As disjunctions and degree of perturbation increase, so does the number of originally infeasible terms that become feasible.

#### Problem:

- Calculating  $v^t$  relies on  $\mathcal{O}^{kt} \neq \emptyset$ .
- When  $Q^{kt} = \emptyset$ , we currently set  $v^t = 0$ .
- Weakens parameterization when  $\mathcal{Q}^{\ell t} \neq \emptyset$ .

Possible solutions include using the basis from:

- Pivoting the last branching constraint into a feasible basis from the parent node.
- The solver's Farkas proof of infeasibility.
- $\bar{x}^{\ell t}$  for  $\ell \in K$  such that  $\mathcal{Q}^{\ell t} \neq \emptyset$ .

## Shrinking PRLP

```
CglVPC: Finishing with exit reason: PRLP_TIME_LIMIT: 0.22032726434662364

CglVPC: Finishing with exit reason: TIME_LIMIT: 0.04378889144964278

CglVPC: Finishing with exit reason: NO_CUTS_LIKELY: 0.46877160636091264

CglVPC: Finishing with exit reason: PRLP_INFEASIBLE: 0.0884996542982254

CglVPC: Finishing with exit reason: SUCCESS: 0.0186789582853192

CglVPC: Finishing with exit reason: OPTIMAL_SOLUTION_FOUND: 0.07605439041253745

CglVPC: Finishing with exit reason: NO_DISJUNCTION: 0.07259737266651302
```

Figure 10: 22% of PRLPs fail due to hitting their time limits.

#### Problem:

# • Currently, PRLP solves with all $\bar{\mathcal{C}}^{kt} \neq \emptyset$ .

- Strong branching fixes create disjunctions larger than specified.
- This can make PRLP intractible.

#### Proposed solution:

- Solve PRLP with only  $\bar{C}^{kt}$  representing unprocessed nodes in solver.
- Apply Lemma 2 to remaining  $\bar{\mathcal{C}}^{kt} \neq \emptyset$  to calculate their farkas multipliers.
- Risks weakening parameterization.

## Pruning the Disjunction before Parameterization

#### Definition 10

An optimality inequality for MILP instance  $IP_k$  is a pair  $(\alpha, \beta) \in \mathbb{R}^n \times \mathbb{R}$  such that  $\alpha^T x^* \geq \beta$  for all  $x^* \in \arg IP_k$ .

#### Theorem 11

Let  $k, \ell \in [K]$ . Let  $\{\mathcal{X}^t\}_{t \in T}$  be a valid disjunction and  $\{v^t\}_{t \in T}$  be farkas multipliers for an inequality  $(\bar{\alpha}, \bar{\beta})$  valid for  $IP_k$ . Let  $T' = \{t \in T : c^\ell \bar{x}^{\ell t} \leq c^\ell x^*\}$  such that  $x^* \in \arg IP_\ell$ . Then  $(\alpha, \beta)$  output from Theorem 9 applied to  $IP_\ell$ ,  $\{\mathcal{X}^t\}_{t \in T'}$ , and  $\{v^t\}_{t \in T'}$  is an optimality inequality for  $IP_\ell$ . [5]

**Translation**: Parameterized disjunctive cuts may be tightened by ignoring disjunctive terms that are proven to not contain an optimal solution.

### **Enabling Cutting Planes While Generating Disjunctions**

|        |       | Average Root Optimality Gap Closed |              |             | Average Root Node Processing Time |              |             | Average % Perturbed     |
|--------|-------|------------------------------------|--------------|-------------|-----------------------------------|--------------|-------------|-------------------------|
| Degree | Terms | No VPCs                            | VPCs via [1] | Param. VPCs | No VPCs                           | VPCs via [1] | Param. VPCs | Terms Becoming Feasible |
| 0.5    | 4     | 61.87%                             | 62.35%       | 62.30%      | 0.929                             | 10.480       | 0.999       | 0.000%                  |
|        | 16    | 61.87%                             | 62.96%       | 62.82%      | 0.936                             | 29.483       | 1.394       | 0.102%                  |
|        | 64    | 61.87%                             | 63.55%       | 63.35%      | 0.921                             | 56.614       | 2.185       | 0.201%                  |
| 2      | 4     | 63.46%                             | 63.45%       | 63.36%      | 0.892                             | 4.293        | 0.927       | 0.000%                  |
|        | 16    | 63.46%                             | 63.76%       | 63.53%      | 0.870                             | 17.576       | 1.394       | 0.558%                  |
|        | 64    | 63.46%                             | 64.73%       | 63.91%      | 0.861                             | 48.773       | 2.295       | 0.596%                  |

Figure 11: Could we close more root optimality gap with a "better" disjunction?

#### Problem:

- Currently, default and disjunctive cuts refine the same root relaxation.
- Perhaps both have large overlaps in contributions.
- Maybe we could close more root optimality gap by reducing this overlap.

#### Proposed solution:

- Turn on cutting planes while generating a disjunction.
- Such disjunctions refine relaxation accounting for cuts at root.
- Go back and remove cuts from disjunction when generation complete.

## Learning When Parametric Disjunctive Cuts Help



Figure 12: Intra-instance variance does not appear to explain Figure 6's inter-instance variance regarding run time.

### Learning When Parametric Disjunctive Cuts Help



Figure 13: There is no relationship between the improvements to root optimality gap closed and run time.

### Learning When Parametric Disjunctive Cuts Help

Goal: Determine when parametric disjunctive cuts improve run time.

Hypothesis: Not all perturbations of the same degree are created equal.

Perhaps we can identify when our parameterization helps by collecting the following:

- Number of pivots away new solutions are from warm start in root LP relaxation
- In disjunctive terms for which cuts are tight:
  - Number of pivots away new solutions are from warm start
  - Whether the optimal basis for each term includes the branching constraint that created it
- Open to suggestions (:

### Comparing to Warm-Starting the Node Queue

**Goal**: Determine when parametric disjunctive cuts improve run time more than warm-starting with a previous disjunction.

- Branch-and-Cut warm-starts include initial primal solutions, pseudo costs, cuts, and disjunction.
- Want to compare warm-starting with:
  - Parameterized disjunctive cuts.
  - Previous terminal disjunctions. [4]
- Latter can process many unnecessary nodes.
- Perhaps our parameterization can be more effective for some problems since we only work with the root node.

### Questions

Are there any changes you'd like to see?

### Bibliography

- [1] Egon Balas and Aleksandr M. Kazachkov. *V*-polyhedral disjunctive cuts, 2022. URL https://arxiv.org/abs/2207.13619.
- [2] Egon Balas and Aleksandr M. Kazachkov. Monoidal strengthening of  $\mathcal{V}$ -polyhedral disjunctive cuts, 2023. URL https://optimization-online.org/2023/02/monoidal-strengthening-of-simple-v-polyhedral-disjunctive-
- [3] Julius Farkas. Theorie der einfachen Ungleichungen. J. Reine Angew. Math., 124:1-27, 1902. URL https://doi.org/10.1515/crll.1902.124.1.
- [4] M. Güzelsoy. Dual Methods in Mixed Integer Linear Programming. PhD, Lehigh University, 2009. URL http://coral.ie.lehigh.edu/~ted/files/papers/MenalGuzelsoyDissertation09.pdf.
- [5] Shannon Kelley, Aleksandr Kazachkov, and Ted Ralphs. Warm starting of mixed integer linear optimization problems via parametric disjunctive cuts. 2024.