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Motivation

Disjunctive cuts can be strong but often expensive. Can we retain their
strength while reducing their cost?
For series of similar MILPs, we can accomplish both through parameterization!
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Figure 1: (Left) given P! and a disjunction x; < 1V x; > 2, we parameterize disjunctive
cut x» < 1 to generate (Right) x» < 1.5, which is valid for the disjunction applied to P2.
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Further Motivation and Outline

@ Disjunctive cuts improve MILP solvers’ ability to close optimality gap
compared to default cutting planes [1].

@ But, they are inconsistent in improving solver run time [1].
@ Parameterization significantly reduces disjunctive cut generation time [5].

@ For series of MILPs sharing the same variables and number of constraints,
this reduction can improve solvers' overall performance [5].

@ Applications within MIP are more common than one might think!

e Branch-and-Price

e Lagrangian Dual Decomposition
o Multi-Objective

o Bilevel

In this presentation, we detail:
@ how to parameterize disjunctive cuts and expectations on effectiveness

@ empirical impact parameterized disjunctive cuts have on solving MILPs
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Input

We define the following:
o Pk:={x e R": Akx > bk}.
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Ski={xePk:xezVvjel}
Xt:={xeR": D' > Df}.

Akt . — [Ak} and bkt .= [bk].

Dt D
okt .= Pk xt
= {x € R": Aktx > pkt}.
XKt = arg min . ok c¥x.

Nt indexes constraints tight at x*t.

Ckt = {x cR": A

ke 5% > bkt}

Parametric Disjunctive Cuts

max CkX

x€eR"
Akx > pk (1Px)
Xj €L Vjel

o AK € R9%" and b¥ € RY for
all k e K.

o {X'}ic7 is a disjunction.

o {X'}iet is valid for a set
SKeR™if 8K C Jper X

e Ckt is an optimal basis
cone.
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How to Generate Disjunctive Cuts

We can generate a V-polyhedral disjunctive cut (VPC) by solving the Point-Ray
LP (PRLP):

o max a'w
RUURI (a,B)€R1
2.0 . guyg2

= a’p> B VpE UerEN

15 e pp=lorx =2

l — a'r>0 VreUerRM
1.0 (PRLP)

Forall ke Kand t e T:

0.0

@ £ := extreme point of CKt.

-0.5

? ; : : 1 @ R := extreme rays of Ckt.

Figure 2: Solving PRLP for IP; with
W= [_01] yields the VPC x, < 1.
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How to Find Farkas Multipliers

Let (o, B) be a valid cut for IPy and {X*'}cT be a disjunction. Then there exists
vt such that

OéT — vtAkt
B < vibkt forall t € T. [3]
vi>0

We refer to {v'};c7 as Farkas multipliers.

Let k € K and {X*}:cT be a disjunction. Let t € T and ax > B3 be valid for all
x € Ckt. Then vi, the Farkas multiplier on constraint i, is calculated:

° aT(A;‘\—Itkry*);},, for i € Nt and h such that Nft = i.

@ 0, otherwise. [2]
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How to Parameterize Disjunctive Cuts

Let {v'}:eT be a set of nonnegative Farkas multipliers for a disjunction {X*}¢cT valid
for Z". For ! € K and for all j € [n], let aj := maTx{vtAﬂ-t} and 8 := mi7l_7{vtb“}. Then
te te

ax > B is valid for all x € S*. [5]
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Figure 3: Generate VPC x» < 1 for IP; Figure 4: Apply Theorem 3 to /P; and
and calculate Farkas multipliers {v*, v?}. {v*, v?}, generating x; — 9% > —10.
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Expectation Setting

Definition 4

The pair (x,{X*}:c7) is a certificate for IP, when mi$ ckxht = ckx.
te

Definition 5

The Warm-Started MILP takes as inputs IPx, IPy, and a certificate (x, {X*}ic7)
for IPx such that exactly one of the following statements is true:

e ck =£ ct, or
@ there exists exactly one i € [q] such that Af # A% or bf + b

It returns a certificate (X, {X},c+) for IP; if S* # 0 and null otherwise.

Theorem 6
The Warm-Started MILP is NP-Hard. [5]

| N\

Translation: No warm-start can improve the complexity class of solving MILPs. |

i = — SaRe
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Expectation Setting

Let {X'}ie1 be a disjunction and € > 0. Let IP, and IP; be such that

® mingeT mingcgr{ckxk} > cfxk

o Al=Akte, e, b =bK+eeor b’ =ck+ee
Then there exists A € R9*", b € RY, ¢ € R", (ia,ja) € [l x [n]. i € [d].
and jc € [n] such that minieT min, coee{c x“} = c'xt. [5]

Translation: Parameterized disjunctive cuts are not guaranteed to
improve disjunctive dual bound. J

Kelley, Kazachkov, Ralphs Parametric Disjunctive Cuts October 11, 2024 10 /27



Experimental Setup

We run an experiment as follows:

@ Create a base test set from 104 presolved MIPLIB 2017 instances with at
most 5000 variables and 5000 constraints.

@ Create an experimental test set of 5 random perturbations of objective,
RHS, and/or matrix for each instance in the base set.

Use VPCs [1] as the disjunctive cut.

Replications vary by the following parameters:

e 4, 16, or 64 term disjunctions to generate VPCs
e 0.5 or 2 degrees of random perturbation
o run with no VPCs, VPCs via [1], or parameterized VPCs.

Solve the experiment set for each combination of parameters using Gurobi
10.
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Experimental Results (Root Node)

We compare the ability to close the optimality gap at the root node:

degree | terms Average Root Optimality Gap Closed
No VPCs | VPCs via [1] | Param. VPCs
4 61.87% 62.35% 62.30%
0.5 16 61.87% 62.96% 62.82%
64 61.87% 63.55% 63.35%
4 63.46% 63.45% 63.36%
2.0 16 63.46% 63.76% 63.53%
64 63.46% 64.73% 63.91%

Parameterization maintains some of [1]'s ability to close additional root optimality
gap with disjunctive cuts as compared to Gurobi's default cuts.

Kelley, Kazachkov, Ralphs
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Experimental Results (Root Node)

We compare the time (in seconds) to process the root node:

degree | terms Average Root Node Processing Time
No VPCs | VPCs via [1] | Param. VPCs
4 0.929 10.480 0.999
0.5 16 0.936 29.483 1.394
64 0.921 56.614 2.185
4 0.892 4.293 0.927
2.0 16 0.870 17.576 1.394
64 0.861 48.773 2.295

Parameterization significantly reduces the time to generate disjunctive cuts as

compared to [1].
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Experimental Results (Total Solve)

Relative Improvements between Solves with and without Parameterized VPCs
Termination Time Nodes Processed LP Iterations

——— 50th percentile

~——— 33rd percentile ——— 56th percentile

median 5 median - median

% of Experiment Set

+ 0 0
-200 -100 0 100 -200 -100 0 100 -200 -100 0 100
% Improvement from Parameterized VPCs % Improvement from Parameterized VPCs % Improvement from Parameterized VPCs

Figure 5: A significant portion of our experiment set sees performance improvements
when parameterized VPCs are added to Gurobi's cut generators.
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Figure 6: Time improvements appear to be random when fixing degree of perturbation,
size of disjunction, and instance.
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Future Directions and Conclusion

Parameterization: Next Steps:
@ Reduces the cost of generating @ Improve efficiency of
disjunctive cuts vs. [1]. parameterization.
@ Often increases strength of root @ Understand when parameterized
default cuts. disjunctive cuts help solver
performance.

@ Improves solver performance overall
for many instances.

Parameterizing disjunctive cuts can improve a MILP solver's performance, but
under what conditions remains an open question.
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How to Tighten Parametric Disjunctive Cuts

Lemma 8

Let k, £ € [K] such that AX = A®. Let {X*};c1 be a disjunction and {v'}:cT be
nonnegative Farkas multipliers derived while {X*}:c1 applied to IPx. Let (o, B) be the
result of applying Theorem 3 to {X*}et, {v'}ter, and IP;. Then (o, B) is tight for
clconv(Uie 7 Q). [5]

Theorem 9

| N\

Let k,£ € [K]. Let {X*}ier be a disjunction and {v'}.cT _be nonnegative Farkas
multipliers derived while {X'}.c1 applied to IPy. Let (&, [3) be the result of applying
Theorem 3 to {X*}ier, {v'}teT, and IPy. If A £ A*, let:

@ {¥'}icT be the Farkas multipliers derived for (&, B) [2]

@ («,B) be the result of applying Theorem 3 to {X'}ier, {V'}ter, and IP;
Else, let:

® (,8) = (a7)
Then (o, B) is tight for cl conv(Use7Q%). [5]
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How to Tighten Parametric Disjunctive Cuts

Visually, the application of Theorem 9 looks like the following:

25 2.5
P P
o o
2.0 o 2.0 4 o
=== x; =91y > —-10 === x;— 91y > -89
15 -=- m=lora;=27] 154 -—= n=lorz =2 |
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Figure 7: Apply Theorem 3 to IP; and Figure 8: Calculate {V*}+c7 and reapply
{v!,v?}, generating x; — 9x2 > —10. Theorem 3, generating x; — 9x, > —8.9.

Parameterizing x, < 1 with Theorem 9 yields x; —9x, > —8.9, a tight cut for the
convex hull of the disjunction applied to /Ps.
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Finding a Basis for Infeasible Disjunctive Terms

Average Root Optimality Gap Closed = Average Root Node Processing Time Average % Perturbed
Degree | Terms | No VPCs | VPCs via [1] | Param. VPCs = No VPCs | VPCs via [1] | Param. VPCs | Terms Becoming Feasible

4 61.87% 62.35% 62.30% 0.929 10.480 0.999 0.000%

0.5 16 61.87% 62.96% 62.82% 0.936 29.483 1.394 0.102%
64 61.87% 63.55% 63.35% 0.921 56.614 2.185 0.201%

4 63.46% 63.45% 63.36% 0.892 4.293 0.927 0.000%

2 16 63.46% 63.76% 63.53% 0.870 17.576 1.394 0.558%
64 63.46% 64.73% 63.91% 0.861 48.773 2.295 0.596%

Figure 9: As disjunctions and degree of perturbation increase, so does the number of

originally infeasible terms that become feasible.

Problem:

@ Calculating v! relies on

Qkt £ .

@ When QK = (), we
currently set vt = 0.

@ Weakens parameterization

when Qf £ ().

Kelley, Kazachkov, Ralphs

Possible solutions include using the basis from:

@ Pivoting the last branching constraint into

a feasible basis from the parent node.

@ The solver’'s Farkas proof of infeasibility.

@ X' for £ € K such that Q% # ().

Parametric Disjunctive Cuts

October 11, 2024

18 /27



Shrinking PRLP

CglVPC:
CglVPC:
CglVPC:
CglVPC:
CglVPC:
CglVPC:
CglVPC:
CglVPC:

Finishing
Finishing
Finishing
Finishing
Finishing

Finishing

Finishing

Finishing

reason:

reason:

reason:

reason:

reason:

reason:

reason:

reason:

PRLP_TIME_LIMIT: 0.22032726434662364
TIME_LIMIT: 0.04378889144964278
NO_CUTS_LIKELY: 0.46877160636091264
PRLP_INFEASIBLE: 0.0884996542982254
SUCCESS: 0.01866789582853192
OPTIMAL_SOLUTION_FOUND: 0.07605439041253745
FAIL_LIMIT: 0.011292924637013136
NO_DISJUNCTION: 0.07259737266651302

Figure 10: 22% of PRLPs fail due to hitting their time limits.

Problem:

° Currently_, PRLP solves
with all C¥t £ ().

@ Strong branching fixes
create disjunctions larger
than specified.

@ This can make PRLP
intractible.

Kelley, Kazachkov, Ralphs

Proposed solution:

Parametric Disjunctive Cuts

@ Solve PRLP with only Ckt representing

unprocessed nodes in solver.

@ Apply Lemma 2 to remaining C¥ # ) to

calculate their farkas multipliers.

@ Risks weakening parameterization.
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Pruning the Disjunction before Parameterization

Definition 10

An optimality inequality for MILP instance IPy is a pair (o, ) € R"” X R such
that a"x* > (3 for all x* € arg IPy.

Let k.0 € [K]. Let {X'}icT be a valid disjunction and {v'}:cT be farkas
multipliers for an inequality (&, 3) valid for IPx. Let T' = {t € T : ¢’z < c'x*}
such that x* € arg IP;. Then («, 3) output from Theorem 9 applied to IPy,
{X*}eerr, and {v'}ie1/ is an optimality inequality for IP,. [5]

\

Translation: Parameterized disjunctive cuts may be tightened by ignoring
disjunctive terms that are proven to not contain an optimal solution.
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Enabling Cutting Planes While Generating Disjunctions

Average Root Optimality Gap Closed | Average Root Node Processing Time Average % Perturbed
Degree | Terms | No VPCs | VPCs via [1] Param. VPCs | No VPCs | VPCs via [1] | Param. VPCs | Terms Becoming Feasible
4 61.87% 62.35% 62.30% 0.929 10.480 0.999 0.000%
0.5 16 61.87% 62.96% 62.82% 0.936 29.483 1.394 0.102%
64 61.87% 63.55% 63.35% 0.921 56.614 2.185 0.201%
4 63.46% 63.45% 63.36% 0.892 4.293 0.927 0.000%
2 16 63.46% 63.76% 63.53% 0.870 17.576 1.394 0.558%
64 63.46% 64.73% 63.91% 0.861 48.773 2.295 0.596%

Figure 11: Could we close more root optimality gap with a " better” disjunction?

Problem: Proposed solution:
@ Currently, default and @ Turn on cutting planes while generating a
disjunctive cuts refine the disjunction.

same root relaxation. . . . .
@ Such disjunctions refine relaxation

@ Perhaps both have large accounting for cuts at root.

overlaps in contributions. .. .
P @ Go back and remove cuts from disjunction

@ Maybe we could close more when generation complete.
root optimality gap by
reducing this overlap.
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Figure 12: Intra-instance variance does not appear to explain Figure 6's inter-instance
Kelle

variance regarding run time.



Learning When Parametric Disjunctive Cuts Help

Comparison of Root Optimality Gap
and Termination Time Improvement
0 (Param Disj, Param Cuts vs. Default)

—0.5 1

Relative Termination
Time Improvement
(e}

o

—1.0 : S -
~1.0 —0.5 0.0 0.5 1.0

Relative Root Optimality Gap Improvement

Figure 13: There is no relationship between the improvements to root optimality gap
closed and run time.
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Learning When Parametric Disjunctive Cuts Help

Goal: Determine when parametric disjunctive cuts improve run time.

Hypothesis: Not all perturbations of the same degree are created equal.

Perhaps we can identify when our parameterization helps by collecting the
following:

@ Number of pivots away new solutions are from warm start in root LP
relaxation

@ In disjunctive terms for which cuts are tight:

e Number of pivots away new solutions are from warm start

o Whether the optimal basis for each term includes the branching
constraint that created it

@ Open to suggestions (:

Kelley, Kazachkov, Ralphs Parametric Disjunctive Cuts October 11, 2024 24 /27



Comparing to Warm-Starting the Node Queue

Goal: Determine when parametric disjunctive cuts improve run time more than
warm-starting with a previous disjunction. J

@ Branch-and-Cut warm-starts include initial primal solutions, pseudo costs,
cuts, and disjunction.

@ Want to compare warm-starting with:

o Parameterized disjunctive cuts.
o Previous terminal disjunctions. [4]

@ Latter can process many unnecessary nodes.

@ Perhaps our parameterization can be more effective for some problems since
we only work with the root node.
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Questions

Are there any changes you'd like to see?
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