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Definition of “Digital Twin”

A digital twin is a set of virtual information 

constructs that mimics the structure, 

context, and behavior of a natural, 

engineered, or social system (or system-

of-systems), is dynamically updated with 

data from its physical twin, has a predictive 

capability, and informs decisions that 

realize value. The bidirectional interaction 

between the virtual and the physical is 

central to the digital twin.
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Digital Twins Provide Opportunities to Accelerate Scientific 
Discovery and Improve Manufacturing

3

Figure from Abolhasani & Kumacheva (2023), Nature Syn.

• High-throughput applications
• Self-driving laboratories

• Automated and adaptive 
experimental campaigns



Digital Twins Provide Opportunities to Accelerate Scientific 
Discovery and Improve Manufacturing
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• High-throughput applications
• Self-driving laboratories

• Automated and adaptive 
experimental campaigns

1. Baniqued et al. (2024) J. of Field Robotics  2. Wang et al. (2024) Robotics and Computer-Integrated Manu. 3. Rajesh et al. (2024) Journal of Power Sources 

4. Wang et al. (2024) IEEE Transactions on Intelligent Vehicles 5. Xames et al. (2024) IEEE Access

• Robust digital twins enable 
optimal manufacturing

• Optimal design
• Traditional process design

• Data flow optimization

• Optimal control
• Real-time decision making

• Applications: pharmaceuticals and 
energy systems, among others1,2,3,4,5

Figure from Abolhasani & Kumacheva (2023), Nature Syn.



Digital Twins for 
Decision-Making
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Science-Based Design of 
Experiments (SBDoE)

University of Notre Dame

Sandia National Lab
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Scientific Method
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Observe

Hypothesize

Test with 
Experiments

Analyze 
Data

Report 
Conclusions

Example Hypothesis:

Focused Beam Reflectance 

Measurement (FBRM) can be 

used to control particle size in 

crystallization

(Direct Nucleation Control 

[DNC])

t=0

0<t<tf

t=tf



How easy is it to “Test with Experiments”?

8

Test with 
Experiments

• How many experiments 
should I perform?

• Which experiment(s) will 
inform our problem best?

• How expensive are the 
experiments?

• Material cost

• Monetary cost

• Time cost

• Are we developing a model 
for use in other engineering 
tasks?



How easy is it to “Test with Experiments”?
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Test with 
Experiments

• How many experiments 
should I perform?

• Which experiment(s) will 
inform our problem best?

• How expensive are the 
experiments?

• Material cost

• Monetary cost

• Time cost

• Are we developing a model 
for use in other engineering 
tasks? Figures from [6] 

6. Lynch, H.G., Bjarnason, A., Laky, D.J., Brown, C.J., and Dowling, A.W. (2024), Foundations of Computer Aided Process Design (FOCAPD 2024) 



Sequential Optimal Experiment Design (Model-Building)7
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Prior 

Knowledge

Data

Model(s)
Parameter 

Estimation

Sensitivity 

& 

Uncertainty 

Analysis

Optimize New 

Experiment(s)

Do I have 

a good 

model?

No

Yes

Optimal new 

Experiment(s)

Model 

Discrimination

Model with quantified 

uncertainty
7. Wang and Dowling, (2022), AIChE Journal



Traditional Experimental Design Strategies Miss Model Information

14

• One variable at a time7

• Fix variable 1, adjust variable 2

• Requires some knowledge of the 
surface to explore critical regions 

• Factorial Design8

• Set of values for each design variable

• Number of experiments grows 
exponentially with number of 
design variables

7. Williamson et al. (2022) Chem. Mater.  8. Szilyagi et al. (2021) Crystal Growth & Design 



• Factorial Design8

• Set of values for each design variable

• Number of experiments grows 
exponentially with number of 
design variables

Traditional Experimental Design Strategies Miss Model Information

15

• One variable at a time7

• Fix variable 1, adjust variable 2

• Requires some knowledge of the 
surface to explore critical regions 

1. Many experiments required to explore design space

2. Often miss critical regions of the design space
7. Williamson et al. (2022) Chem. Mater.  8. Szilyagi et al. (2021) Crystal Growth & Design 



Brief Crystallization Overview (Case Study)

16

Nucleation Crystal Growth

• Cooling crystallization: Solubility 
reduced by lowering temperature → 
causes supersaturation

• At some point, nucleation occurs, 
causing seed crystals to form

• Growth becomes the dominant 
mechanism as supersaturation depletes

6. Lynch, H.G., Bjarnason, A., Laky, D.J., Brown, C.J., and Dowling, A.W. (2024), Foundations of Computer Aided Process Design (FOCAPD 2024) 



Sequential Optimal Experiment Design (Model-Building)7
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7. Wang and Dowling, (2022), AIChE Journal



Crystallization Model In General Format
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Experimental 

Design

Unknown 

Parameters



Sensitivity Matrix Used to Explain Information Content of 
Experimental Data

19

• Fisher Information Matrix9: Used to understand how an experiment 
or set of experiments contribute to “information” explained

Sensitivity matrix Parameter covariance matrix Fisher information matrix (FIM)

9. Fisher (1949) The Design of Experiments  10. Atkinson (1982) International Statistical Review 11. Kiefer (1959) J. of the Royal Statistical Society. Series B 

12. Box and Draper (1959) J. of the American Statistical Association

Prior

0



Joint Parameter Precision and Model Discrimination
Alberton, A.L., Schwaab, M., Lobão, M.W.N. and Pinto, J.C., 2011. Experimental design for the joint model 

discrimination and precise parameter estimation through information measures. Chemical Engineering 

Science, 66(9), pp.1940-1952.

Galvanin, F., Cao, E., Al-Rifai, N., Gavriilidis, A. and Dua, V., 2016. A joint model-based experimental 

design approach for the identification of kinetic models in continuous flow laboratory reactors. Computers 

& Chemical Engineering, 95, pp.202-215.

Galvanin, F., Cao, E., Al-Rifai, N., Dua, V. and Gavriilidis, A., 2015. Optimal design of experiments for the 

identification of kinetic models of methanol oxidation over silver catalyst. Chimica Oggi-Chemistry Today, 

33(3), pp.51-56.

Pankajakshan, A., Waldron, C., Quaglio, M., Gavriilidis, A. and Galvanin, F., 2019. A Multi-Objective 

Optimal Experimental Design Framework for Enhancing the Efficiency of Online Model Identification 

Platforms. Engineering, 5(6), pp.1049-1059.

Alphabetic Design Criteria Measure Information Content
Figure adapted from: Franceschini, G., & Macchietto, S. (2008). Chem. Eng. Sci., 63(19), 4846-4872.

E-optimality

max min(eig(FIM))

major axis

recommended if M is ill-conditioned

D-optimality

max det(FIM)

ellipsoid volume

robust to linear transformations

A-optimality

max trace(FIM)

enclosing box volume

poor choice for highly correlated θ

confidence ellipsoid for 

covariance matrix V = FIM-1

ME-optimality

min κ(FIM) = max(eig(FIM)) / min(eig(FIM))

ratio of major to minor axes

recommended if M is ill-conditioned

Model Discrimination
Hunter, W.G. and Reiner, A.M., 1965. Designs for discriminating between two rival models. 

Technometrics, 7(3), pp.307-323.

Buzzi-Ferraris, G. and Forzatti, P., 1983. A new sequential experimental design procedure 

for discriminating among rival models. Chemical engineering science, 38(2), pp.225-232.

Ferraris, G.B., Forzatti, P., Emig, G. and Hofmann, H., 1984. Sequential experimental 

design for model discrimination in the case of multiple responses. Chemical engineering 

science, 39(1), pp.81-85.

*Slide adapted from Wang and Dowling (AIChE Annual Meeting 2023) 20



Most Experimental Information at Lowest Cooling Rate

21

• Explore information content of different cooling rates (0.1, 0.2, and 0.3 
ºC∙min-1)

• Traditional “factorial” DoE target slower cooling rates for growth kinetics

Hailey Lynch

• Low cooling rate is most information-rich experiment (aligns with expert 
intuition)

• Multiple experiments lead to higher E-optimality, 
A-optimality, and especially D-optimality

• D-Optimality → Smaller Confidence Region

6. Lynch, H.G., Bjarnason, A., Laky, D.J., Brown, C.J., and Dowling, A.W. (2024), Foundations of Computer Aided Process Design (FOCAPD 2024) 



“Experiment” Abstraction Streamlines Closed-Loop Experiment 
Design
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“Experiment” Abstraction Streamlines Closed-Loop Experiment 
Design
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Experiment

(Digital)

𝑦𝑖 = 𝑓 𝑥, 𝜙, θ +  ε𝑖

Experiment

(Digital)

𝑦𝑖 = 𝑓 𝑥, 𝜙, θ +  ε𝑖

- parmest

Known Variables Unknown Variables



Temperature Control Lab (TC-Lab) – Closed-Loop Experimental 
Design with New Experiment Abstraction

24

Digital 

Components

Physical

Components

Physical System

Parameter Estimation Optimal Experiment 

Design/Optimal Control

- parmest



Optimal Experiments Reduce Uncertainty Depending on FIM 
Criteria

25

Initial Uncertainty A-optimal

D-optimal

Reduced bounding box size

Reduced ellipsoid hypervolume



• Pyomo.DoE is a capable and easy-to-use 
tool for implementing science-based design 
of experiments (SBDoE) to build digital 
twins

• Abundant opportunities for future 
collaboration

• In the future we want to move past 
individual subsystems toward “system-of-
systems” digital twins

• Uncertainty propagation

• Subsystem interactions

26

Summary and Future Work in SBDoE
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Optimal Process Design
(Pharmaceuticals and Energy Systems)

Purdue University

University of Notre Dame
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PharmaPy: An Open-Source Process Simulator in Python

• Python-based modeling
• Code-based UI

• Optimal process design 
and redesign

• Modeling and simulation of 
manufacturing processes

• Evaluate economics for 
manufacturing processes

29



Motivating Example: Brain Cancer Treatment – Lomustine

• Lomustine is an anti-cancer drug, began being 
produced by Bristol-Myers Squibb in 1976

• Was re-released as Gleostine in 2013 by NextSource, 
after which the price dramatically increased over the 
next years [27]

• Our colleagues at Purdue have developed a new 
pathway for a two-step flow synthesis of Lomustine 
[28] in 2019

30

• Reaction 1 occurs very quickly when 
compared to Reaction 2

• Goals:
• Determine an efficient manufacturing 

route for Lomustine

• Refine kinetic models for Lomustine 
synthesis

• Identify flexible operating conditions 
for Lomustine synthesis under 
uncertainty

[27] Loftus, P., (2017) The Wall Street Journal,

[28] Jaman, Z. et. al. (2019) Org. Process Res. Dev.



PharmaPy Digital Twins Can Help Compare Manufacturing 
Candidates2

• Analyze production of Lomustine for different routes and scales
• Scales: 200kg, 600kg, 1000kg

• Modes: Batch, Hybrid, Continuous

31

Continuous unit operations Batchwise unit operations

2. Casas-Orozco et al. (2023) AIChE Journal



PharmaPy Digital Twins Can Help Compare Manufacturing 
Candidates2

• Derivative free optimization (Nelder-Mead in scipy with penalties for constraint 
violation)

• Batch or Hybrid operating modes have the lowest cost for all production 
scenarios

• As scale increases, continuous is becoming more desirable

322. Casas-Orozco et al. (2023) AIChE Journal

batch

hybrid

continuous

continuous 2



PharmaPy Digital Twins Can Help Identify Optimal Manufacturing 
Routes15 

33

• Generate API with the optimal manufacturing route

• Process includes: (1) Synthesis, (2) Solvent Switch (vaporization), (3) Crystallization, 
(4) Filtration

Batch

CSTR

PFR

Semibatch*

Batch

CSTR

PFR

Semibatch*

Batch Batch Cooling

MSMPR

2 MSMPRs

3 MSMPRs

15. Laky et al. (2022) AIChE Annual Meeting, Phoenix. AZ

40 Manufacturing 

Pathways



PharmaPy Digital Twins Can Help Identify Optimal Manufacturing 
Routes15 

34

• Major observations from pareto-optimal curves:
1. First reactor should not be batch

2. Batch cooling crystallization yields much better size and production than the continuous MSMPRs

• Heuristic potentially reduces computational time:
• We know reaction 1 is fast, so choose continuous reactor 2 if reactor 1 is continuous (reduces 

computational requirement by 25%)

15. Laky et al. (2022) AIChE Annual Meeting, Phoenix. AZ

Crystallizer Type



PharmaPy Digital Twins Can Aid in Uncertainty Identification14

• Estimate kinetic parameters Lomustine 
reaction mechanism

• Lomustine (L) synthesis:

𝐼 + 𝑇𝐵𝑁
𝑇𝐻𝐹

𝑳 + 𝑇𝐵𝑂𝐻

• Partial Factorial DoE:

35

Calibration 

samples

Goodness of fit

(calibration 

model)

C
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L
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 D
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T
A

Experiment 𝑪𝑰: 𝑪𝑻𝑩𝑵 ratio T (°C)

1 1 15

2 2 15

3 1 25

4 2 25

5 1 35

6 2 35

14. Casas-Orozco et al. (2023), Chem. Eng. Science



PharmaPy Digital Twins Can Aid in Uncertainty Identification14
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• Partial Factorial DoE:

Experiment 𝑪𝑰: 𝑪𝑻𝑩𝑵 ratio T (°C)

1 1 15

2 2 15

3 1 25

4 2 25

5 1 35

6 2 35

14. Casas-Orozco et al. (2023), Chem. Eng. Science

Best of 5 reaction mechanisms considered [14]

95 % asymptotic 

confidence interval



PharmaPy Digital Twins Can Aid in Uncertainty Identification14

37

• Bootstrapping with PharmaPy:

, , }( *) ( *), {1, ,boot k boot k samplesk n= + = y y θ θ

Final residual 𝜺(𝜽∗) is sampled with 

replacement to produce a set of 𝜺𝒃𝒐𝒐𝒕,𝒌(𝜽∗)

Parameter Estimate 95% CI 

(asymptotic)

𝜑1 -6.073 ±1.39

𝜑2 8.818 ±0.18

𝛼𝐼 0.246 ±9.52

𝛼𝑇𝐵𝑁 1.189 ±1.38

14. Casas-Orozco et al. (2023), Chem. Eng. Science

A-optimality (bounding box)

D-optimality (ellipsoid volume)



PharmaPy Digital Twins Can Incorporate Uncertainty for More 
Robust Optimization and Design Space Analysis15

38

• Using covariance information/confidence intervals, identify what operating regions 
are feasible (probabilistic design space)

• Semi-batch has a larger region of feasibility than the continuous process

Used process metrics (CQA’s):
▪ API maximum solubility

▪ Intermediate conversion

▪ Intermediate:API ratio
15. Laky et al. (2022), Comp. Aided Chem. Eng.
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• Increased renewable generation 
requires innovative energy 
demand solutions

• Hydrogen as an emerging fuel 
source needs technological 
evaluation paradigms to 
understand benefit

40

Figure from DOE Hydrogen Plan: 

(https://www.hydrogen.energy.gov/pdfs/hydrogen-program-plan-2020.pdf) 

G
W

Time of Day
Figure from US EIA (today in energy): 

(https://www.eia.gov/todayinenergy/detail.php?id=56880) 

Energy Systems Require Increased Flexibility and Must Adapt to 
Modern Sustainable Energy Objectives (e.g., Hydrogen)

https://www.hydrogen.energy.gov/pdfs/hydrogen-program-plan-2020.pdf
https://www.eia.gov/todayinenergy/detail.php?id=56880


61 Markets Used to Evaluate Emerging Technologies

41

Figure from FERC (https://www.ferc.gov/electric-power-markets)

• 15 historical markets (2019)

• 15 “current” markets (2022)

• 16 forecasted scenarios (2030)
• “Princeton”

• 10 forecasted scenarios (2035) 
• “NREL”

• 5 forecasted scenarios (2035)
• “NETL”

Multimodal 

Markets

Market association

https://www.ferc.gov/electric-power-markets


Emerging Co-production Technologies Make a Profit in Most 
Scenarios

• At sufficient hydrogen price ($2.50 +), even the existing thermal 
generation technology with co-production (NGCC +SOEC) sees profit in 
over half of the market scenarios

42

Percentage of scenarios that make profit at each hydrogen selling price



Optimal Design Conclusions

• PharmaPy can be leveraged to 
develop impactful digital twins

1. Simulate process models

2. Optimize process conditions

3. Compare candidate models

4. Generate and utilize model uncertainty

5. Evaluate process superstructure to 
inform potential manufacturing routes

• Data-driven and mechanistic models 
can be combined to evaluate emerging 
energy technologies using digital twins

43
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Data Reduction using 
Topological Data Analysis

University of Wisconsin-Madison
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Topological Data Analysis for Classification and Quality Control

46
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Computation with GUDHI 

(state-of-the-art tool)

Computation with vertex contributions (VC) 

(our implementation)

Real-time data processing100x slower than real time

Filtration value Filtration value

Liquid crystal chemical sensor



Data in Engineering is Often

Represented as a Field

47

• Images
• Grayscale (2D field)

• RGB (~3D field)

• Hyperspectral (3D field)

• Space-Time Data
• Molecular dynamics

• Computational fluid dynamics

• Any spatial data (e.g., GIS)

RGBGray

Hyperspectral

Molecular Dynamics



Field Data – Representation, Transformation, Information

48

1 2 3 4 5 6 7 8 9 10

1 

2 

3 

4 

5 

6 

7 

8 

9 

10

Different representations lead to different transformations

Different transformations extract different types of information



Field Data – Topological Data Analysis (TDA)

49

2D fields (i.e., images) reveal topographical features when represented                    

as a 3D surface



Filtration – Euler Characteristic Curve

50

Euler Characteristic (EC)

0-simplex

(vertex)

1-simplex

(edge)

2-simplex

(face)

3-simplex

(cell)

Filtration yields a series of binary fields 

for the EC computation



51

Filtration Example – Liquid Crystal Sensors

𝐜  =  50 𝐜  =  100 𝐜  =  150 𝐜  =  200

0.5 ppm

1 ppm

2 ppm

5 ppm

SO2 Conc.

Filtration results in series of binary images

Binary images reveal information about surface topology



Euler Characteristic Generalization – Problems

52

= + -

• Euler characteristic follows the 
inclusion-exclusion principle

• Should faces be considered 
connected via edges (4-C), or 
via vertices (8-C)?

• This principle is key for 
enabling parallel computation

8-C 4-C



Avoiding Repetitive Evaluation through Abstraction

53

=

x 2

x 2

x 2

0

17. Gray, S. B. Local properties of binary images in two dimensions. IEEE Transactions on Computers, C-20(5):551–561, 1971.

Gray, 1971



Avoiding Repetitive Evaluation through Abstraction

54

=

x 2

x 2

x 2

Gray, 1971

17. Gray, S. B. Local properties of binary images in two dimensions. IEEE Transactions on Computers, C-20(5):551–561, 1971.

18. Laky and Zavala, 2023, Digital Discoery.

Even with this method, we still must compute contributions at each filtration value (not scalable)



Avoiding Repetitive Evaluation through Abstraction
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19. Snidaro, L. and Foresti, G. Real-time thresholding with euler numbers. Pattern Recognition Letters, 24:1533–1544, 2003.

𝒪(𝑛c𝑙𝑤) 𝒪(𝑛c + 𝑙𝑤)

Only need local vertex neighborhood values → Highly parallelizable; Low memory requirements

𝑙
𝑤
𝑛𝑐

- length of the field

- width of the field

- number of filtration values



Abstraction for 3D fields

5618. Laky and Zavala, 2023, Digital Discovery.
20. Toriwaki, J. and Yonekura, T. Euler number and connectivity indexes of a three dimensional digital picture. Forma, 17:183–209, 2002.

• Voxels in 3D digital images (or 
cells) [4]

• Voxel-sized neighborhood about a 
vertex yields the same savings

• More hassle distinguishing which 
pattern is represented for active 
cells



Software Implementation

5718. Laky and Zavala, 2023, Digital Discovery.
20. Toriwaki, J. and Yonekura, T. Euler number and connectivity indexes of a three dimensional digital picture. Forma, 17:183–209, 2002.

• All code written in C++ and called 
from an interface in Python

• Exploit high-powered computing 
hardware for parallelization

• Intel Xeon E5-2697—2.7 GHz
• 24 Cores

• 256 GB RAM

• Implemented low-memory 
version for 2D, bitmap files 
(.BMP)
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Baseline Case - Random Fields (2D and 3D)

• “Standard” resolutions
• 1920x1080
• 1280x720
• 128x128x128
• 256x256x256

• Large, square systems
• 2048x2048
• 4096x4096

• All field sizes tested with 
both Uniform and Normal 
noise

58



Random Fields (2D and 3D) – Significant Speedup

59

Type (2D) GUDHI (s) GUDHI (MP/s) VC, 24 cores (s) VC, 24 cores (MP/s) Speedup

1280x720 5.1 ± 0.2 0.181 ± 0.005 0.0093 ± 0.0006 99.3 ± 4.9 550

1920x1080 14.6 ± 0.4 0.142 ± 0.004 0.0188 ± 0.0011 110.8 ± 4.6 780

2048x2048 31.6 ± 1.1 0.133 ± 0.004 0.0381 ± 0.0029 110.4 ± 6.0 830

4096x4096 145.2 ± 5.0 0.116 ± 0.003 0.210 ± 0.032 81.95 ± 13.2 706

Type (3D) GUDHI (s) GUDHI (MV/s) VC, 24 cores (s) VC, 24 cores (MV/s) Speedup

128x128x128 42.1 ± 1.2 0.050 ± 0.001 0.0765 ± 0.0067 27.5 ± 1.2 550

256x256x256 471. ± 12. 0.036 ± 0.001 0.591 ± 0.013 28.4 ± 0.6 7891. Significant speedup over traditional tools                                                

(2-3 orders of magnitude with 24-core parallelization)

2. Can process ~100Megapixel or ~30Megavoxel images in one second



Liquid Crystal Sensor Analysis

• LC micrograph responses to 
SO2 under 40% RH

• Average image size of 
134x134

• Small size drastically 
reduces efficiency of 
parallelization

60
22. Jiang et al. Journal of Physical Chemistry C. 2023

Random field 

(2048x2048)
LC data

(134x134)

Type GUDHI (MP/s) VC, serial (MP/s) VC, 12 cores (MP/s) Speedup

SO2 Images 0.332 ± 0.009 6.268 ± 0.171 11.33 ± 0.49 34

Random Field 0.271 ± 0.009 6.127 ± 0.132 11.20 ± 0.39 41

0.5 ppm SO2 1 ppm SO2 2 ppm SO2 5 ppm SO2



Molecular Dynamics Simulations

• Biomass (fructose) 
interaction in water-
cosolvent systems

• dioxane
• γ-valerolactone
• tetrahydrofuran

• Water molecule density can 
be represented as a 3D 
field

• Fields are 20x20x20

6123. Chew et al. Fast predictions of liquid-phase acid-catalyzed reaction rates using molecular dynamics simulations and convolutional neural networks. Chemical science, 11(46):12464–12476, 2020

24. Smith et al. Topological analysis of molecular dynamics simulations using the euler characteristic. J. Chem. Theory Comput., 19(5):1553–1567, 2023

Type GUDHI (MV/s) VC, serial (MV/s) VC, 12 cores (MV/s) Speedup

MD Fields 0.108 ± 0.004 1.065 ± 0.025 2.105 ± 0.111 19.5

dioxane γ-valerolactone tetrahydrofuran



Hyperspectral Imaging

• Determining kiwi ripeness 
without destructive 
sampling26

• RGB images look similar

• EC may be able to 
differentiate state of ripeness
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Figure from Mehta et al. 2018

ripeunder ripe overripe

25. Mehta  et al. (2018) Single-cell analysis using hyperspectral imaging modalities, J Biomech Eng, 140(2), 020802.

26. Varga et al. (2021) Measuring the Ripeness of Fruit with Hyperspectral Imaging and Deep Learning, arXiv:2104.09808v1

Type GUDHI (MV/s) VC, serial (MV/s) VC, 24 cores (MV/s) Speedup

Kiwi Images 0.0701 ± 0.0078 1.973 ± 0.112 34.57 ± 2.38 493

Random Field 0.0427 ± 0.0031 1.506 ± 0.006 28.19 ± 1.02 660



Conclusions

• Topology reveals order and patterns 
throughout field data

• How we process these patterns 
drastically impacts computational 
efficiency

• Enabling real-time analysis and control

• Extend these methods to other 
applications

• Pharmaceuticals

• Other powder/melt-based processing
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Formulation 
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(Pharmaceuticals)

Figure from [25]

Impurity content

Homogeneity of 

active ingredient in 

powder

Powder physical 

and 

chemical 

properties

Critical Quality 

Monitoring

25. Mehta  et al. (2018) Single-cell analysis using hyperspectral imaging modalities, J Biomech Eng, 140(2), 020802.

26. Varga et al. (2021) Measuring the Ripeness of Fruit with Hyperspectral Imaging and Deep Learning, arXiv:2104.09808v1



Conclusions
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Model Building

Uncertainty 
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Process Design

Process Control

Data
Decisions

Decisions

Digital 

Components

Physical

Components

1. Flexible software tools enable building of fit-for-purpose digital twins through:

• Functionality (e.g., model building, optimal process design)

• Computational tractability (real-time algorithms)
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Open-Source Tools Enable 
Building Digital Twins



Research Opportunities for Fit-for-Purpose Digital Twins
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