Cybersecurity and Quantum Computation in Control of Cyberphysical Systems for Next-Generation Manufacturing

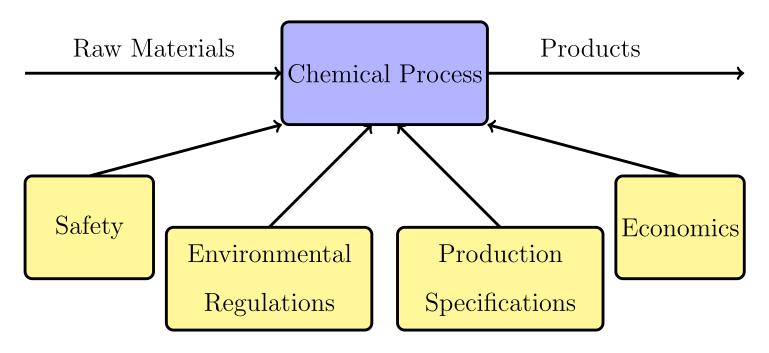
Helen Durand

Department of Chemical Engineering and Materials Science Wayne State University

Process Systems Engineering
Seminar
Purdue University
March 8, 2024

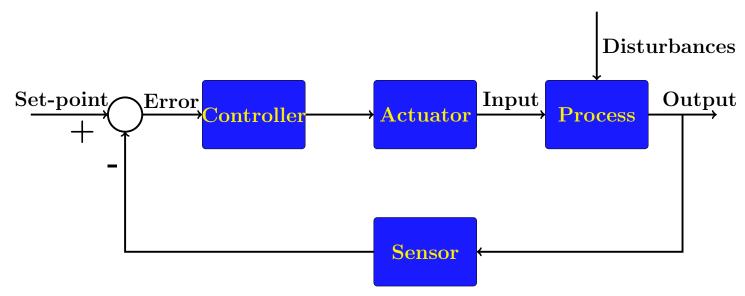
INTRODUCTION

• Incentives for chemical process control



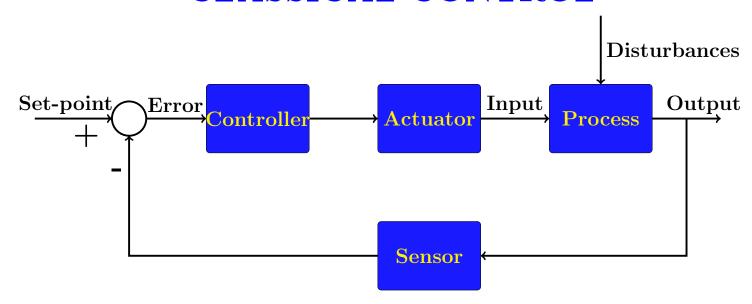
- Need for continuous monitoring and external intervention (process control)
- Objectives of a process control system
 - ♦ Ensuring stability of the process
 - ♦ Suppressing the influence of external disturbances
 - ♦ Optimizing process performance

FEEDBACK CONTROL LOOP



- How a feedback control loop (closed-loop system) works:
 - ♦ A variable describing the condition of a process (e.g., temperature, pressure, species concentration; known as an output) is measured by a sensor
 - ♦ The error between the measured output value and the desired value of this output (set-point) is calculated and fed to the controller
 - ♦ The controller computes a value of the manipulated input to the process to reduce the error
 - ♦ A control actuator (typically a valve) is used to apply the manipulated input value to the process

CLASSICAL CONTROL



- Classical control: single-input/single-output (SISO) control design
 - \diamond Proportional-integral-derivative (PID) control (error e(t))
 - ▶ Error reflects difference between measured output and set-point
 - \diamond Input/control action u(t)

$$u(t) = K_c e(t) + \underbrace{\frac{1}{\tau_I} \int_0^t e(\tau) d\tau}_{\mathbf{D}} + \underbrace{\tau_D \frac{de(t)}{dt}}_{\mathbf{D}}$$

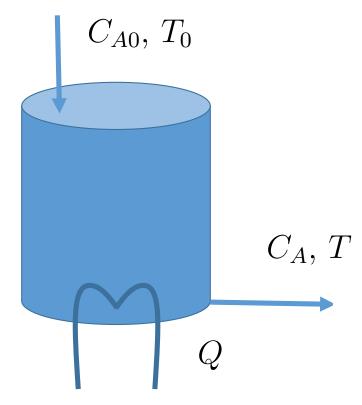
 $\diamond K_c, \tau_I, \tau_D$: scalar values that can be picked (tuned)

ADVANCED MODEL-BASED PROCESS CONTROL

- Advanced process control utilizes a process dynamic model explicitly in the controller design
 - ♦ A mathematical process model is developed:
 - Constructed from first-principles
 - ▶ Identified from input-output process data
 - ♦ The model describes the process dynamics (variation of the process state variables in time due to disturbances, inputs, and interactions between variables)
 - Controllers are synthesized based on the process model
- Advantages of model-based control
 - ♦ Possibility of improved closed-loop performance
 - Model accounts for inherent process characteristics (e.g., nonlinear behavior, multivariable interactions)
 - Characterization of limitations on achievable closed-loop stability, performance and robustness

NONLINEAR MODEL-BASED PROCESS CONTROL

• Example: continuous stirred tank reactor (CSTR)



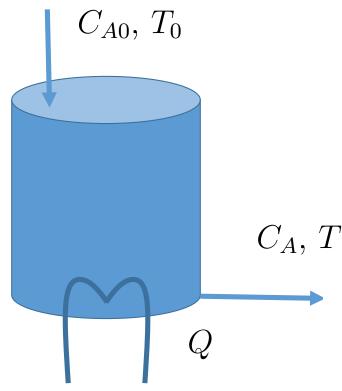
• Model: system of nonlinear ordinary differential equations (ODEs)

$$\frac{dT}{dt} = \frac{F}{V_r}(T_0 - T) + \frac{(-\Delta H)}{\rho C_p} k_0 e^{-E/RT} C_A + \frac{Q}{\rho C_p V_r} \Rightarrow x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} T - T_s \\ C_A - C_{As} \end{bmatrix}, \ \dot{x} = \frac{dx}{dt}$$

$$\frac{dC_A}{dt} = \frac{F}{V_r}(C_{A0} - C_A) - k_0 e^{-E/RT} C_A \qquad u = Q - Q_s, \ w = C_{A0} - C_{A0s}$$

NONLINEAR MODEL-BASED PROCESS CONTROL

• Example: continuous stirred tank reactor (CSTR)



• Model: system of nonlinear ordinary differential equations (ODEs)

$$\dot{x} = f(x, u, w)$$

- Techniques for nonlinear controller design for driving the process state to the operating steady-state
 - ♦ Lyapunov-based control

♦ Model predictive control

NONLINEAR PROCESS SYSTEMS

• State-space description

$$\dot{x} = f(x, u, w)$$

- $\diamond x \in X \subset \mathbb{R}^n$ is the state, $u \in U \subset \mathbb{R}^m$ is the manipulated input, $w \in W \subset \mathbb{R}^l$ is the disturbance, f is a vector function
- Explicit nonlinear feedback control law: u = h(x)
 - ♦ Control design technique: Lyapunov-based control (Y. Lin and E.D. Sontag, SCL, 1991; H. Khalil, Prentice Hall, 2002; P. D. Christofides and N. H. El-Farra, Springer-Verlag, 2005)
 - Renders the origin (steady-state) asymptotically stable
 - \diamond There exists a Lyapunov function V which satisfies

$$\dot{V} = \frac{\partial V(x)}{\partial x} f(x, h(x), 0) < 0, \ \forall \ x \in D$$
 $V : \text{energy of a physical system}$

- \diamond Typically, $V(x) = x^T P x$ (quadratic) and $\Omega_{\rho} \subseteq D$ is a level set of V where state constraints are met (i.e., $\Omega_{\rho} := \{x : V(x) \leq \rho\}$)
- $\diamond u = h(x)$ possesses a degree of robustness to disturbances and uncertainty
- Performance considerations and constraints are not directly/explicitly taken into account

MODEL PREDICTIVE CONTROL

• Model predictive control (MPC)

$$\min_{u \in S(\Delta)} \int_{t_k}^{t_{k+N}} l_T(\tilde{x}(\tau), u(\tau)) d\tau$$
s.t.
$$\dot{\tilde{x}}(t) = f(\tilde{x}(t), u(t), 0)$$

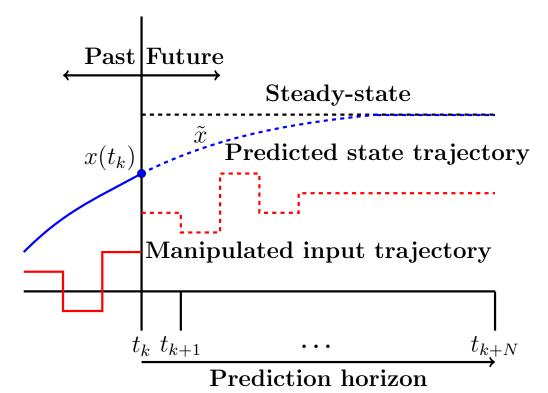
$$\tilde{x}(t_k) = x(t_k)$$

$$u(t) \in U, \ \tilde{x}(t) \in X, \ \forall \ t \in [t_k, t_{k+N})$$

• Quadratic tracking stage cost:

$$l_T(x, u) = x^T Q x + u^T R u$$

- $\diamond Q$, R are positive definite matrices
- Solve the optimization problem every Δ time units (sampling period)
 - \diamond At each sampling time t_k



- Solution is a piecewise-constant input trajectory
 - \diamond Each piece is held constant for a period Δ
 - \diamond Prediction horizon N

MODEL PREDICTIVE CONTROL

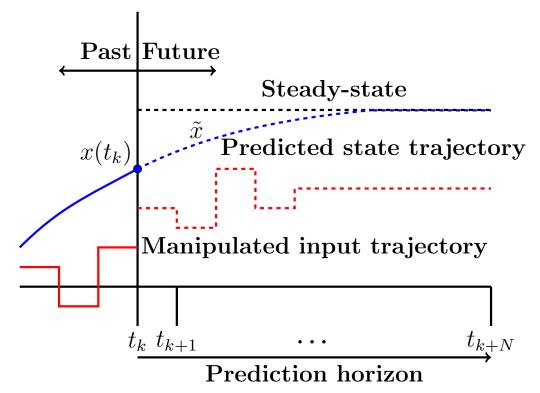
• Model predictive control (MPC)

$$\min_{u \in S(\Delta)} \int_{t_k}^{t_{k+N}} \left[\tilde{x}^T Q \tilde{x} + u^T R u \right] d\tau$$
s.t.
$$\dot{\tilde{x}}(t) = f(\tilde{x}(t), u(t), 0)$$

$$\tilde{x}(t_k) = x(t_k)$$

$$u(t) \in U, \ \tilde{x}(t) \in X, \ \forall \ t \in [t_k, t_{k+N})$$

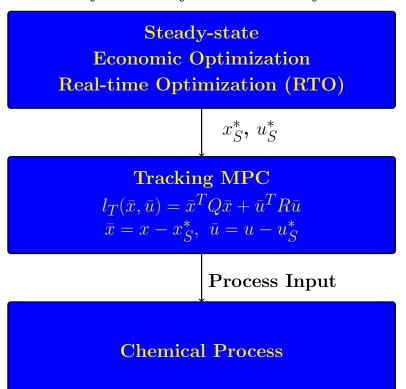
- Receding horizon implementation
 - Only the first piece of the input trajectory is applied
 - \triangleright Allows for feedback at every \triangle
 - Accounts for effects of disturbances and plant/model mismatch on the optimal solution
 - Longer prediction horizon may improve closed-loop performance



- Closed-loop stability is not guaranteed
- Approaches for closed-loop stability
 - Infinite/sufficiently long prediction horizon
 - ♦ Terminal cost/constraint
 - ♦ Contractive constraint

NEXT-GENERATION MANUFACTURING

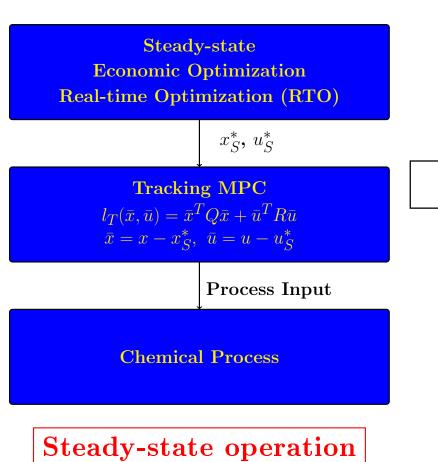
- Next-generation/smart manufacturing Objectives (J. Davis, T. Edgar, J. Porter, J. Bernaden and M. Sarli, Comput. Chem. Eng., 2012):
 - ♦ Profitability
 - ♦ Autonomy
 - ♦ Safety and cybersecurity



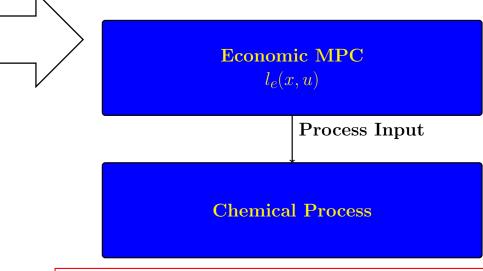
- Example: Moving away from a hierarchical approach to optimization and control
 - ♦ Upper layer:
 - Determine economically-optimal steady-state (real-time optimization (RTO)) (M. L. Darby,
 M. Nikolaou, J. Jones and D. Nicholson, JPC,
 2011)
 - ♦ Lower layer:
 - ▶ Feedback control drives the state of the process to the optimal steady-state
- Tighter integration of plant operation and process economic optimization

PROCESS ECONOMICS AND CONTROL

• Traditional Paradigm



- Integration of economic optimization and process control
- Generalization of MPC
 - ♦ General (economic) stage cost



Dynamic/time-varying operation

- Economic MPC (EMPC) potential use cases:
 - ♦ Time-varying objective function or constraints (M. Ellis and P. D. Christofides, AIChE J.,

2013; A. Gopalakrishnan and L. T. Biegler, CACE , 2013)

ECONOMIC MPC FORMULATION

• EMPC formulation:

$$\min_{u(\cdot) \in S(\Delta)} \int_{t_k}^{t_{k+N}} l_e(\tilde{x}(\tau), u(\tau)) d\tau$$
s.t.
$$\dot{\tilde{x}}(t) = f(\tilde{x}(t), u(t), 0)$$

$$\tilde{x}(t_k) = x(t_k)$$

$$u(t) \in U, \ \tilde{x}(t) \in X,$$

$$\forall \ t \in [t_k, t_{k+N})$$

$$|u(t_j) - u(t_{j-1})| \le \epsilon_d$$

$$j = k, \dots, k+N-1$$

- Components of EMPC:
 - ♦ Economic cost function
 - ♦ Dynamic model
 - ♦ State feedback measurement
 - ♦ Input and state magnitude constraints
 - ♦ Input rate of change constraints
- System equipped with a measure of instantaneous economics l_e
- Computes control actions that optimize economics
- Accounts for input and state constraints
 - ♦ Examples: temperature or flow rate bounds
- Prevents rapid variations in inputs which may damage actuators

LYAPUNOV-BASED ECONOMIC MPC

Boundedness / Time-varying Operation (Mode 1)

$$\min_{u(\cdot) \in S(\Delta)} \int_{t_k}^{t_{k+N}} l_e(\tilde{x}(\tau), u(\tau)) \, d\tau$$

$$\text{s.t.} \qquad \dot{\tilde{x}}(t) = f(\tilde{x}(t), u(t), 0)$$

$$\tilde{x}(t_k) = x(t_k)$$

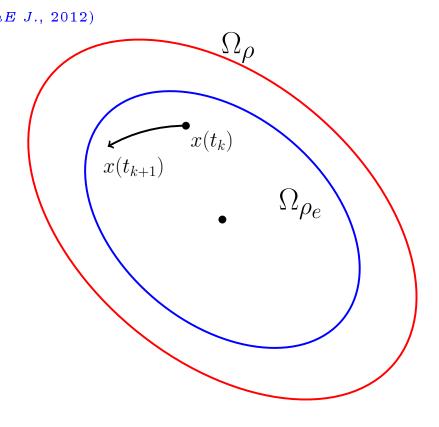
$$u(t) \in U, \ \tilde{x}(t) \in X, \ \forall \ t \in [t_k, t_{k+N})$$

$$|u_i(t_j) - h_i(\tilde{x}(t_j))| \le \epsilon_r, \ i = 1, \dots, m,$$

$$j = k, \dots, k+N-1$$

$$V(\tilde{x}(t)) \le \rho_e, \ \forall \ t \in [t_k, t_{k+N})$$

$$\text{if } V(x(t_k)) \le \rho_e \ \text{and} \ t_k < t_s$$



- Provable stability: boundedness of the closed-loop state in Ω_{ρ} ($\Omega_{\rho_e} \subset \Omega_{\rho}$)
- Provable feasibility: h(x) meets all state and input constraints

LYAPUNOV-BASED ECONOMIC MPC

Convergence to the Steady-State (Mode 2)

$$\min_{u(\cdot) \in S(\Delta)} \int_{t_k}^{t_{k+N}} l_e(\tilde{x}(\tau), u(\tau)) d\tau$$
s.t.
$$\dot{\tilde{x}}(t) = f(\tilde{x}(t), u(t), 0)$$

$$\tilde{x}(t_k) = x(t_k)$$

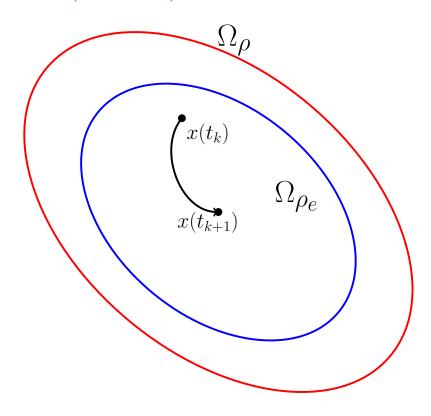
$$u(t) \in U, \ \tilde{x}(t) \in X, \ \forall \ t \in [t_k, t_{k+N})$$

$$|u_i(t_j) - h_i(\tilde{x}(t_j))| \le \epsilon_r, \ i = 1, \dots, m,$$

$$j = k, \dots, k + N - 1$$

$$\frac{\partial V(x(t_k))}{\partial x} f(x(t_k), u(t_k), 0)$$

$$\le \frac{\partial V(x(t_k))}{\partial x} f(x(t_k), h(x(t_k)), 0)$$
if $V(x(t_k)) > \rho_e$ or $t_k \ge t_s$



- Compute control actions that decrease the Lyapunov function
- Provable stability: convergence to a small neighborhood of the steady-state

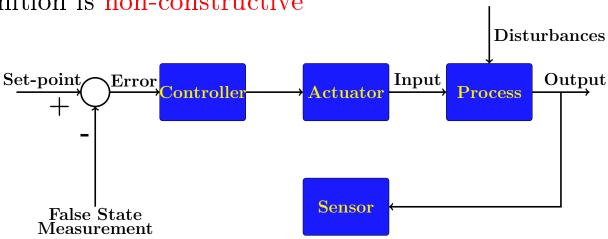
CYBERSECURITY AND PROCESS CONTROL SYSTEMS

- Cyberattacks on control systems seek to impact a physical process and can impact safety, profit, and production rates (A.A. Cárdenas et al., ASIACCS, 2011)
- Do cyberattackers care about attacking control and manufacturing systems?
 - ♦ 2010: Stuxnet (trellix.com)
 - > Attack on Iranian nuclear facilities
 - ▶ Worm entered systems via USB sticks and spread
 - > Searched for control system software
 - ▶ Ran centrifuges at conditions that cause breakdown
 - > Falsified information to main controller so that there was no indication of a problem
- How can we make it hard for cyberattackers to cause issues?
 - ♦ Design process to be cyberattack-resilient
 - ♦ Detect attacks and then shut down a process
 - ♦ Diagnose attacks to shut down only attacked components
 - ♦ Fight back against attackers
- How can we prevent reductions in agility while mitigating risk?

CYBERSECURITY AND PROCESS CONTROL SYSTEMS

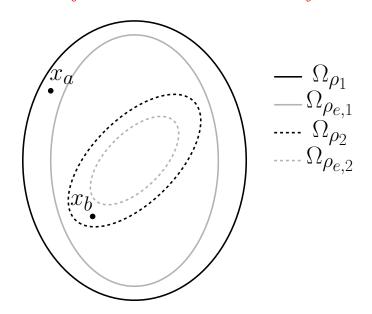
(H. Durand, Mathematics, 2018)

- Need for understanding control theory of attacks and mitigation strategies
- Cyberattacks on feedback controllers remove associations between state measurements and inputs
 - \diamond Undesired inputs $u \in U$ can be applied at a given state
- Attacks on sensors, actuators, or both
- Cyberattack-resilience for state measurement falsification requires:
 - \diamond There exist no possible input policies given the controllers used and their implementation strategies such that $x(t) \notin X$, for any allowable initial state $x_0 \in \bar{X}$ and $w(t) \in W$, $t \in [0, \infty)$
 - ▶ This definition is non-constructive



UNDERSTANDING RESILIENCE

- Attacks may be designed by reverse engineering known control laws
 - ♦ Suggests that randomly selecting the controller to be used at a given sampling time may make cyberattack design more difficult
 - ♦ Randomness in control design can only be considered if closed-loop stability is maintained under normal operation
 - Closed-loop stability and feasibility guarantees can be made with a randomized LEMPC implementation strategy
 - ▷ Cyberattack-resiliency is not guaranteed



- Implementation strategy:
 - \diamond Develop n_p LEMPC's and $h_1(x)$
 - \diamond At each t_k , randomly select one of the controllers until one is found for which:
 - $\triangleright x(t_k) \in \Omega_{\rho_i}, i = 1, \dots, n_p, \text{ for the } n_p th$ LEMPC

$$\triangleright x(t_k) \in \Omega_{\rho_1} \text{ for } h_1(x)$$

Process Description

• Continuous stirred tank reactor (CSTR) with second-order, exothermic, irreversible reaction of the form $A \to B$:

$$\frac{dC_A}{dt} = \frac{F}{V}(C_{A0} - C_A) - k_0 e^{\frac{-E}{RT}} C_A^2
\frac{dT}{dt} = \frac{F}{V}(T_0 - T) + \frac{-\Delta H}{\rho_L C_p} k_0 e^{\frac{-E}{RT}} C_A^2 + \frac{Q}{\rho_L C_p V}$$

- Control objective: regulate the process in an economically optimal time-varying fashion while maintaining closed-loop stability
 - ♦ Economic cost:

$$\int_{t_k}^{t_{k+N}} \left[k_0 e^{-\frac{E}{RT(\tau)}} C_A(\tau)^2 \right] d\tau$$

♦ Manipulated input constraints

$$0.5 \le C_{A0} \le 7.5 \text{ kmol/m}^3$$
 $-5.0 \times 10^5 \le Q \le 5.0 \times 10^5 \text{ kJ/h}$

Deviation variables:

$$x_1 = C_A - C_{As}, \quad x_2 = T - T_s$$

 \diamond Process model in input-affine form $\dot{x} = \tilde{f}(x) + gu$

Lyapunov-Based Controller Design

- Lyapunov-based controller for the inlet concentration: $h_{1,1}(x) = 0 \text{ kmol/m}^3$
 - ♦ Lyapunov-based controller for the heat rate input:
 - Sontag's Formula (Y. Lin and E.D. Sontag, SCL, 1991)

$$h_{2,1}(x) = \begin{cases} -\frac{L_{\tilde{f}}V_1 + \sqrt{L_{\tilde{f}}V_1^2 + L_{g_2}V_1^4}}{L_{g_2}V_1}, & \text{if } L_{g_2}V_1 \neq 0\\ 0, & \text{if } L_{g_2}V_1 = 0 \end{cases}$$

 \diamond A quadratic Lyapunov function of the form $V_1(x) = x^T P x$ with:

$$P = \left[\begin{array}{cc} 1200 & 5 \\ 5 & 0.1 \end{array} \right]$$

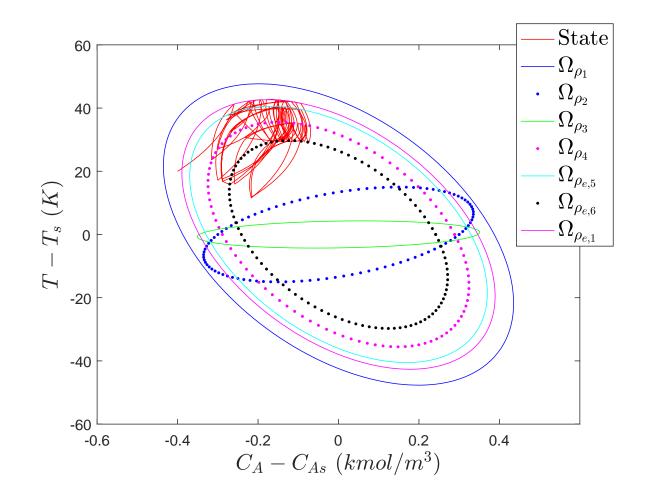
- \diamond Stability region $\rho_1 = 180$ (i.e., $\Omega_{\rho_1} = \{x \in \mathbb{R}^2 : V_1(x) \leq \rho_1\}$)
- Process state initialized at $x_{init} = [-0.4 \text{ kmol/m}^3 \text{ 20 K}]^T$
- LEMPC parameters: N = 10, $\Delta = 0.01$ h
- Process simulated with an integration step size of 10⁻⁴ h

Randomized LEMPC Development

• 6 LEMPC's were designed

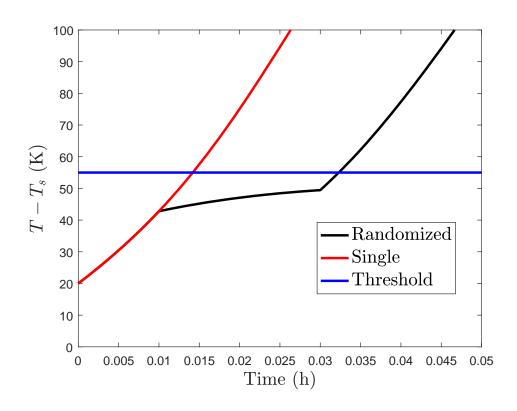
$$\diamond \Omega_{\rho_i} \subseteq \Omega_{\rho_1}, i = 1, \dots, 6$$

- $\diamond h_{i,1} = 0 \text{ kmol/m}^3$
- $\diamond h_{i,2}$ designed via Sontag's control law
- \diamond Closed-loop state is maintained within Ω_{ρ_1} throughout 1 h of operation in the absence of a cyberattack



Randomized LEMPC and LEMPC Under a Cyberattack

- Cyberattack with $x_f = [-0.0521 \text{ kmol/m}^3 8.3934 \text{ K}]^T$ is applied to a single LEMPC and the randomized LEMPC implementation strategy
- Randomized LEMPC results depend on seed to random number generator
- Randomized LEMPC barely delayed the time until $x_2 > 55$ K compared to the single LEMPC (0.0142 h)



Seed	Time $x_2 > 55$ (h)
5	0.0231
10	0.0144
15	0.0142
20	0.0323
25	0.0247
30	0.0142
35	0.0142
40	0.0146
45	0.0247
50	0.0142

CYBERATTACK DETECTION STRATEGIES

- Randomized LEMPC implementation strategy could not guarantee that no problematic inputs could be applied over time
 - ♦ Problem: No principle to the randomness besides luck
 - ♦ Demonstrates the need for principled design of cyberattack-handling strategies
- Three concepts for utilizing LEMPC to attempt to detect attacks were explored

```
(H. Durand and M. Wegener, Mathematics, 2020; H. Oyama and H. Durand, AIChE J., 2020; H. Oyama et al., Front. Chem. Eng., 2022; K. Kasturi Rangan et al., DYCOPS, 2022)
```

- ♦ LEMPC with random control law modifications to probe for cyberattacks
 - > Safety guaranteed under actuator attacks (not sensor measurement attacks)
- ♦ State feedback LEMPC with an attack detection strategy based on state predictions at each sampling time
 - ▷ Safety guaranteed under actuator attacks but only for a short time under undetected sensor measurement attacks
- ♦ Output feedback LEMPC (M. Ellis, J. Zhang, J. Liu and P. D. Christofides, SCL, 2014; L. Lao, M. Ellis, H. Durand and P. D. Christofides, AIChE J., 2015) with an attack detection strategy based on redundant state estimators
 - ▷ Safety guaranteed under limited sensor attacks (not actuator attacks)

OBSERVABILITY ASSUMPTION

• M sets of measurements are continuously available:

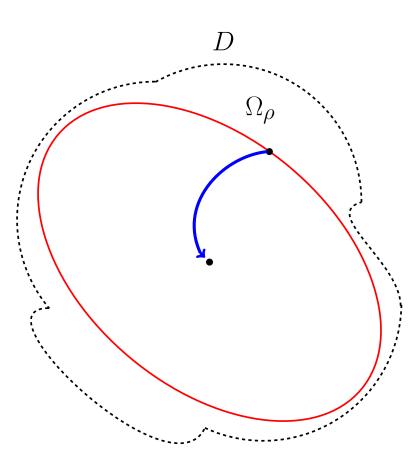
$$y_i(t) = k_i(x(t)) + v_i(t)$$

- \diamond k_i is vector-valued function, and v_i represents the measurement noise associated with the measurements y_i
- $\diamond v_i \in V_i \subset \mathbb{R}_i^q \ (|v_i| \leq \theta_{v,i}), \ i = 1, \dots, M$
- A deterministic observer exists for each of the M sets of measurements:

$$\dot{z}_i = F_i(\epsilon_i, z_i, y_i)$$

- \diamond Observer estimate z_i ; $\epsilon_i > 0$
- Assumptions:
 - \diamond For an initial state estimate with sufficiently low error between z_i and x, $h(z_i)$ maintains the closed-loop state in Ω_{ρ}
 - \diamond There exists a time t_{bi} such that:

$$|z_i(t) - x(t)| \le \epsilon_{mi}$$



CYBERATTACK-RESILIENT OUTPUT FEEDBACK LEMPC

- Cyberattacks on state measurements could impact the state estimate used by the LEMPC
- If the estimate is sufficiently incorrect, the closed-loop state may exit Ω_{ρ}
- Estimator properties suggest an attack detection methodology
 - $\diamond |z_i(t) x(t)| \le \max\{e_{mi}\}, i = 1, \dots, M$
 - \diamond Implies $|z_i(t) z_j(t)| \leq \epsilon_{\max}$, $i, j = 1, \ldots, M$, when no attack occurs
 - Condition can be used with redundant estimators to attempt to flag falsified sensor measurements

$$\min_{u(t) \in S(\Delta)} \int_{t_k}^{t_{k+N}} l_e(\tilde{x}(\tau), u(\tau)) d\tau$$
s.t. $\dot{\tilde{x}}(t) = f(\tilde{x}(t), u(t))$

$$\tilde{x}(t_k) = z_1(t_k)$$

$$\tilde{x}(t) \in X, \, \forall \, t \in [t_k, t_{k+N})$$

$$u(t) \in U, \, \forall \, t \in [t_k, t_{k+N})$$

$$V(\tilde{x}(t)) \leq \rho_{e,1}, \, \, \forall \, t \in [t_k, t_{k+N}),$$

$$\text{if } \tilde{x}(t_k) \in \Omega_{\rho_{e,1}}$$

$$\frac{\partial V(\tilde{x}(t_k))}{\partial x} (f(\tilde{x}(t_k), u(t_k)))$$

$$\leq \frac{\partial V(\tilde{x}(t_k))}{\partial x} (f(\tilde{x}(t_k), h(x(t_k))))$$

$$\text{if } \tilde{x}(t_k) \in \Omega_{\rho}/\Omega_{\rho_{e,1}}$$

CYBERATTACK-RESILIENT OUTPUT FEEDBACK LEMPC

- Consider that at least one state estimate is not impacted by an attacker
- If $|z_i(t) z_j(t)| > \epsilon_{\max}$, $i, j = 1, \dots, M$, flag an attack
- If $|z_i(t) z_j(t)| \le \epsilon_{\max}$, i, j = 1, ..., M, but an attack occurred:
 - \diamond Closed-loop state will be maintained in Ω_{ρ} over the subsequent sampling period under sufficient conditions
 - \triangleright Examples: sufficiently small $\rho_{e,1}$, θ , and Δ

$$\min_{u(t) \in S(\Delta)} \int_{t_k}^{t_{k+N}} l_e(\tilde{x}(\tau), u(\tau)) d\tau$$
s.t. $\dot{\tilde{x}}(t) = f(\tilde{x}(t), u(t))$

$$\tilde{x}(t_k) = z_1(t_k)$$

$$\tilde{x}(t) \in X, \ \forall \ t \in [t_k, t_{k+N})$$

$$u(t) \in U, \ \forall \ t \in [t_k, t_{k+N})$$

$$V(\tilde{x}(t)) \leq \rho_{e,1}, \ \forall \ t \in [t_k, t_{k+N}),$$
if $\tilde{x}(t_k) \in \Omega_{\rho_{e,1}}$

$$\frac{\partial V(\tilde{x}(t_k))}{\partial x} (f(\tilde{x}(t_k), u(t_k)))$$

$$\leq \frac{\partial V(\tilde{x}(t_k))}{\partial x} (f(\tilde{x}(t_k), h(x(t_k))))$$
if $\tilde{x}(t_k) \in \Omega_{\rho}/\Omega_{\rho_{e,1}}$

MOTIVATION FOR HANDLING SIMULTANEOUS ACTUATOR AND SENSOR ATTACKS

• Continuous stirred tank reactor (CSTR) with second-order $A \to B$ reaction:

$$\frac{dC_A}{dt} = \frac{F}{V}(C_{A0} - C_A) - k_0 e^{\frac{-E}{RT}} C_A^2
\frac{dT}{dt} = \frac{F}{V}(T_0 - T) + \frac{-\Delta H}{\rho_L C_p} k_0 e^{\frac{-E}{RT}} C_A^2 + \frac{Q}{\rho_L C_p V}$$

- Control objective: Optimize process economics while maintaining the closed-loop state in Ω_{ρ_1}
 - ♦ Economic cost:

$$\int_{t_k}^{t_{k+N}} [k_0 e^{-\frac{E}{RT(\tau)}} C_A(\tau)^2] d\tau$$

♦ Manipulated input constraint

$$0.5 \le C_{A0} \le 7.5 \text{ kmol/m}^3$$

♦ Deviation variables:

$$x_1 = C_A - C_{As}, \quad x_2 = T - T_s$$

 \diamond Process model in input-affine form $\dot{x} = \tilde{f}(x) + gu$

MOTIVATION FOR HANDLING SIMULTANEOUS ACTUATOR AND SENSOR ATTACKS

- Lyapunov-based controller: $h(x) = -1.6x_1 0.01x_2$ (M. Heidarinejad, J. Liu, and P. D. Christofides, SCL, 2012)
 - \diamond A quadratic Lyapunov function of the form $V_1(x) = x^T P x$ with:

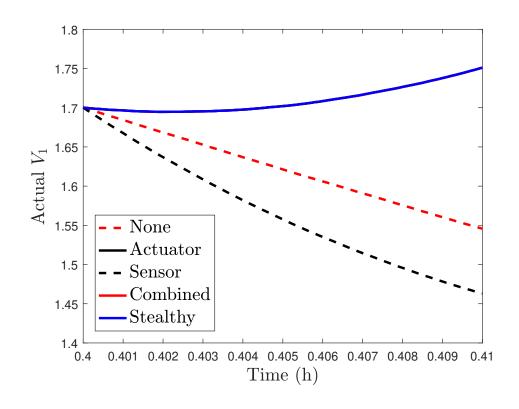
$$P = \left[\begin{array}{cc} 110.11 & 0 \\ 0 & 0.12 \end{array} \right]$$

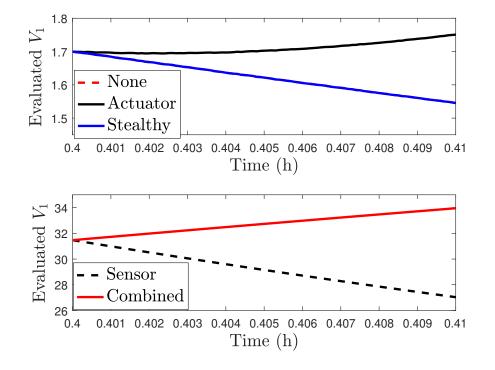
- \diamond Stability region $\rho_1 = 440$ (i.e., $\Omega_{\rho_1} = \{x \in \mathbb{R}^2 : V(x) \leq \rho_1\}$)
- $\diamond \ \Omega_{\rho_{e_1}} \subset \Omega_{\rho}, \ \rho_{e_1} = 330$
- LEMPC parameters: $N = 10, \Delta = 0.01 \text{ h}$
- Process simulated with an integration step size of 10^{-3} h
- The LEMPC receives full state feedback with the full system state $x = [x_1 \ x_2]^T$
- Attack detection policy (initialized at 0.4 h when attack begins): Check if Lyapunov function evaluated at the state measurement decreases over Δ

VARIOUS ATTACK POLICIES

(H. Oyama, D. Messina, K. K. Rangan, and H. Durand, Frontiers in Chemical Engineering, 2022)

- Actuator attack ($u = 0.5 \text{ kmol/m}^3$): Discoverable
- False sensor measurement $(x_1 + 0.5 \text{ kmol/m}^3)$: Not discoverable (no safety issue)
- Combined actuator and sensor attack: Discoverable
- Stealthy actuator and sensor attack (sensor measurements follow trajectory they should have taken): Not discoverable
 - ♦ State moves closer to safe operating region boundary



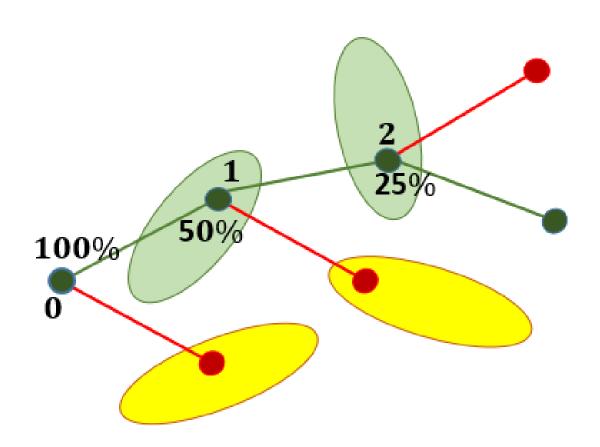


PREVENTING SAFETY ISSUES DURING SIMULTANEOUS ATTACKS

- Multiple detector types can be used to aid in cornering an attacker
 - ♦ Examples:
 - ▶ Redundant estimators and forcing the decrease of the Lyapunov function across a sampling period
 - ▶ Redundant estimators and state predictions with a redundant control law
 - Resilient under sufficient conditions
 - Closed-loop state cannot leave a safe operating region in the presence of individual or simultaneous attacks before attack detection
 - ▶ Potentially challenging to obtain reasonable control law parameters satisfying resilience theory (K. Nieman et al., J. Loss Prev. Process Ind., 2023)
 - ♦ Combining detectors may create simultaneous detection and diagnosis strategies (D. Messina and H. Durand, ADCHEM, 2024)
 - ▶ Violation of one detection metric and not the second indicates whether the attack is on actuators or sensors based on detection metric construction
- Need a strategy for detecting attacks on sensors that might flag them even with all sensors being compromised

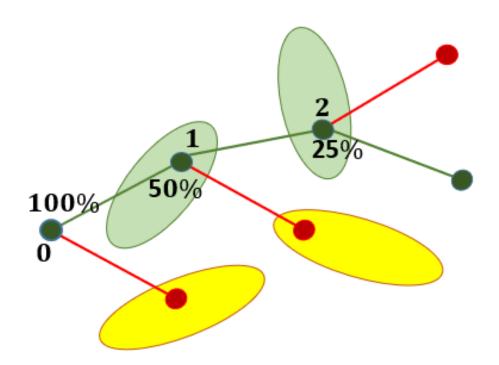
(H. Oyama et al., Digital Chemical Engineering, 2023)

- Set up expectations for measurements that would be "hard" to fake
 - ♦ At every sampling time, two control actions are available
 - ♦ Should result in non-overlapping possible sets of measured states
 - ♦ One of the two is randomly selected



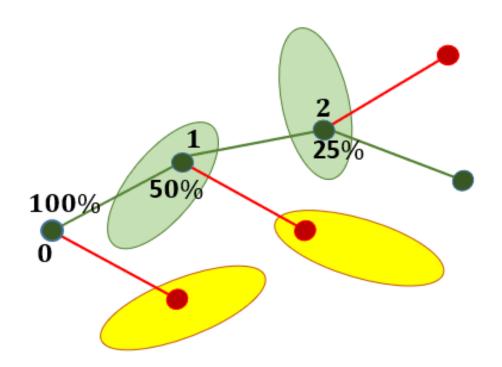
• At the first sampling time:

- ♦ Both possible control actions keep the closed-loop state in a safe operating region with or without a sensor attack
- ♦ The controller randomly applies one of the two
- ♦ The attacker is forced to guess a state measurement in one of the two possible measured state sets to avoid being caught
- \diamond 50% chance to guess correctly

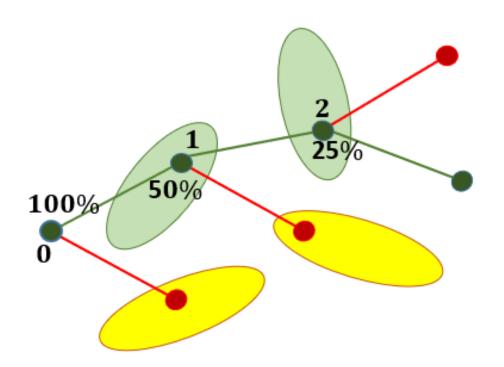


• At the second sampling time:

- ♦ The attacker is "caught" if they guessed the wrong set
- ♦ If they guessed the correct set, a false measurement is provided to a controller
- ♦ One of two known control actions will be applied that keeps the closed-loop state in a safe operating region regardless of whether there is an attack
- \diamond 50% chance to guess the next set that the detector is expecting
- \diamond 25% chance they guess correctly twice in a row



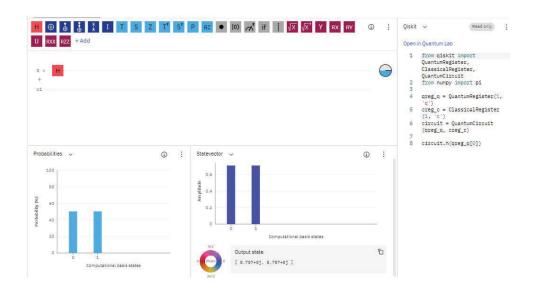
- Applying this strategy continuously makes it unlikely an attacker goes long without being detected
- Validate that the measurement p sampling times ago was correct
 - Otherwise the attacker is unlikely to have not been noticed between then and now
 - \diamond p sampling periods of safety under rogue inputs from an originally correct state measurement required



IMPLEMENTING CONTROL ON QUANTUM COMPUTERS

Quantum Computing

- Quantum computing is a technology of recent interest in chemical engineering (D.E Bernal et al., AIChE J., 2022; A. Ajagekar and F. You, CACE, 2020; A. Ajagekar, T. Humble, and F. You, CACE, 2020; A. Ajagekar, Energy, 2019)
- Quantum computers exist today of different types
- Quantum annealing
 - Solves an optimization problem
- Gate-based computers



- Control is implemented using computing
 - ♦ Advances in computing should be evaluated for control relevance

QUANTUM COMPUTING-IMPLEMENTED CONTROL

- Computational bottlenecks faced in control implementation raise the question of whether these could be overcome by next-generation computing frameworks
- Before investigating that, we must address the safety implications of quantum computing
 - ♦ Quantum computing introduces non-standard operating challenges
 - ▷ "Noise" (errors) in computation in near-term quantum devices (noisy intermediate-scale quantum (NISQ) devices)
 - ▶ Non-deterministic algorithms
 - ♦ Need to define algorithm and hardware requirements to facilitate guidance of algorithm designers and co-design principles for algorithms and control laws to promote safety

• Key needs:

- ♦ Develop strategies for simulating closed-loop systems under controllers implemented on quantum computers (K. Kasturi Rangan et al., AIP Publishing, 2023)
- ♦ Develop theory relating non-determinism due to noise and algorithms to safety principles for quantum computation (K. Nieman et al., IECR, 2022)
- ♦ Co-design control laws and quantum algorithms to pair efficiency benefits with safety (K. Nieman et al., Digital Chemical Engineering, 2024)

QUANTUM MECHANICS FOR QUANTUM COMPUTING VS. CHEMISTRY

- Reminders from chemistry:
 - ♦ "Time-independent Schrödinger equation" (eigenvalue-eigenvector relationship)

$$\hat{H}(x,t)\psi(x,t) = E\psi(x,t)$$

♦ Time-dependent Schrödinger equation

$$\hat{H}(x,t)\psi(x,t) = i\hbar \frac{\partial \psi(x,t)}{\partial t}$$

- $\hat{H}(x,t)$: Hamiltonian (total energy operator)
- \bullet Energy E
- \hbar : Reduced Planck constant
- $\psi(x,t)$: Wavefunction of the quantum system
 - ♦ Contains information about position of a quantum system
 - \diamond Example: $\psi(x,t)$ is the wavefunction of an electron
 - $\flat \psi(x_0, t_0)^* \psi(x_0, t_0) dx$ conveys the probability that the quantum particle will be found in a spatial interval with width dx around x_0 at time t_0 (T. Engel,

QUANTUM MECHANICS FOR QUANTUM COMPUTING VS. CHEMISTRY

- Wavefunctions are derived from a more fundamental notion of "quantum states"
 - ♦ "Time-independent Schrödinger equation" (eigenvalue-eigenvector relationship)

$$\bar{H}(t) |\Psi(t)\rangle = E |\Psi(t)\rangle$$

♦ Time-dependent Schrödinger equation

$$\bar{H}(t) |\Psi(t)\rangle = i\hbar \frac{\partial |\Psi(t)\rangle}{\partial t}$$

- $|\Psi(t)\rangle$ is the "quantum state"
 - ♦ "Dirac notation"
- Wavefunctions are derived from the quantum state in a way that makes them particularly good for representing information about position
- Position is continuous
- Gate-based quantum computers generally stay with the binary concept of classical computing
 - ♦ We only want to have 2 possible quantum states for the system
 - ♦ Position will not work for this

QUANTUM MECHANICS FOR QUANTUM COMPUTING VS. CHEMISTRY

- Wavefunctions are derived from a more fundamental notion of "quantum states"
 - ♦ "Time-independent Schrödinger equation" (eigenvalue-eigenvector relationship)

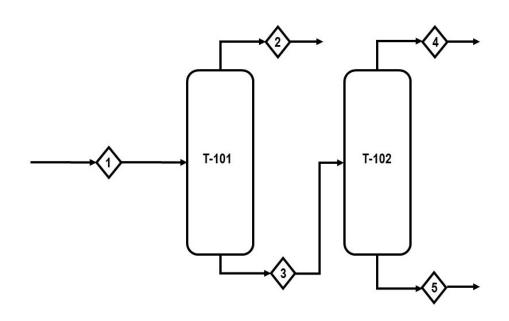
$$\bar{H}(t) |\Psi(t)\rangle = E |\Psi(t)\rangle$$

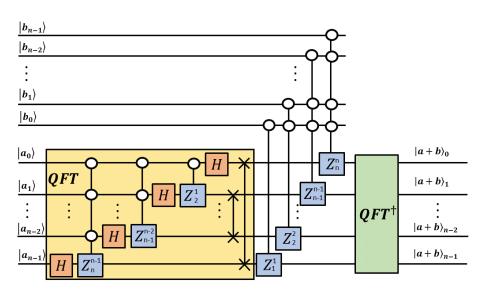
♦ Time-dependent Schrödinger equation

$$\bar{H}(t) |\Psi(t)\rangle = i\hbar \frac{\partial |\Psi(t)\rangle}{\partial t}$$

- $|\Psi(t)\rangle$ is the "quantum state"
 - ♦ "Dirac notation"
- Wavefunctions are derived from the quantum state in a way that makes them particularly good for representing information about position
- Position is continuous
- Gate-based quantum computers generally stay with the binary concept of classical computing
 - ♦ Wavefunctions are not used in quantum computing
 - \diamond Two possible quantum states: $|0\rangle$ and $|1\rangle$ (regardless of actual implementation)

CONCEPTUALIZING QUANTUM CIRCUITS

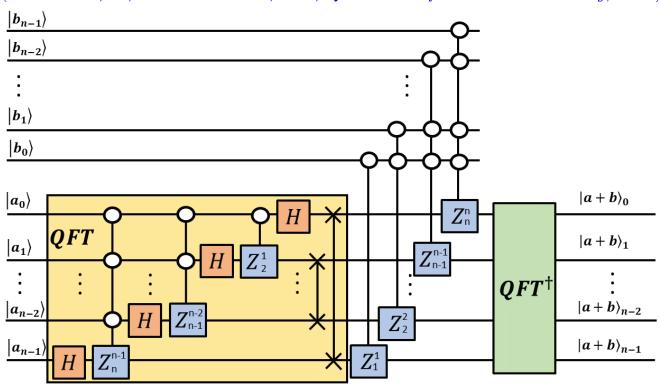




- Each unit of a chemical plant changes the state of a process stream
 - Symbols and labeling for process units create meaning for chemical engineers regarding the expected state changes
- Each block ("gate") in a quantum circuit changes the state of a quantum system
 - Symbols and labeling for the gates create meaning regarding the expected state changes
 - \diamond Example: H gate puts a qubit in an equal superposition of two states

QFT-BASED ADDITION

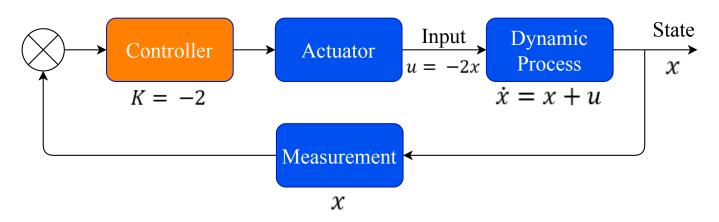
(Ruiz-Perez, L., Garcia-Escartin, J.C., Quantum Information Processing, 2017)



- QFT-based addition: Add two integers a and b (S. Anagolum, Github)
- Binary representations of both numbers are translated to qubit states
- Quantum gates are applied (including those in the inverse QFT, QFT[†]) to obtain final qubit states representative of the bits of the sum

QUANTUM COMPUTING-IMPLEMENTED CONTROL EXAMPLE

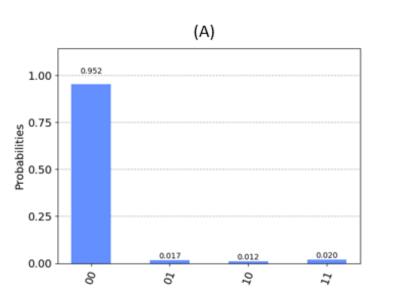
Motivation

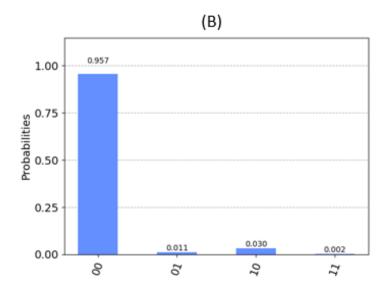


- Address the safety of running a control strategy using a quantum algorithm on a quantum device
 - ♦ Perform initial study through a simulation
 - \diamond A linear dynamic process, $\dot{x} = x + u$, classically stabilized using the control law u = -2x
 - \diamond Evaluate u = -2x as the negative of x + x
 - Addition performed using a quantum simulator (qasm_simulator) accessed via Qiskit
 - ♦ Quantum simulator does not inherently have noise
 - ▶ Required to select a noise model

QUANTUM COMPUTING-IMPLEMENTED CONTROL EXAMPLE

Noise Models

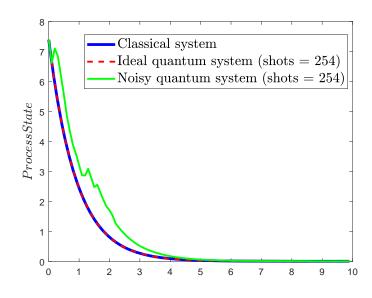


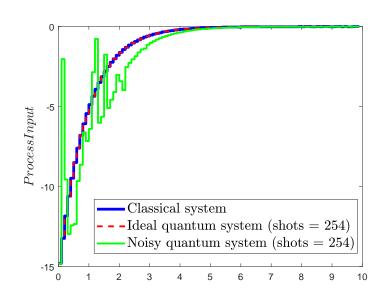


- A depolarizing error parameter for qasm_simulator was selected using command for modeling the noise from the 5-qubit quantum device, ibmq_manila, on the qasm_simulator
 - \diamond The controlled Z gate was simulated with both the qasm_simulator using this noise model from the device backend and with the depolarizing error parameter set to a fixed value on qasm_simulator
- A depolarizing error parameter of 0.05 was determined to sufficiently approximate the results from the simulations based on ibmq manila

QUANTUM COMPUTING-IMPLEMENTED CONTROL Results

- Comparison between the state trajectories (left) and input trajectories (right) when run with 254 shots for x(0) = 7.4
 - ♦ Classical computer ("Classical system"),
 - ♦ Quantum simulator with 254 shots and no noise ("Ideal quantum system")
 - ♦ Quantum simulator with 254 shots and noise ("Noisy quantum system")
- Some deviation is observed between the noisy system and the other two, related to the size (in binary) of the state measurement and number of shots



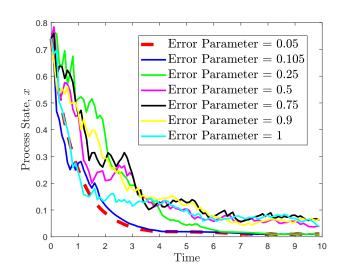


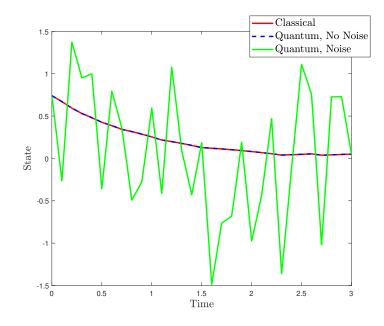
QUANTUM COMPUTING-IMPLEMENTED CONTROL

Moving Toward Theory

- Why does the closed-loop state move toward the origin despite the noise?
 - ♦ Understand potential of using NISQ devices for control
- Factors include number of stabilizing inputs and likelihood of selecting the "correct" input for a given shot count
 - ♦ Example:
 - ▶ Rounded state measurement: 74

 - \triangleright Number of inputs that would cause x to move toward the origin: 182 (71.09%)
 - Sampling period length can also be key
 - ▷ Suggest co-design of quantum algorithms and control laws





ADVANCED CONTROL AND QUANTUM COMPUTATION

- Rigorous theory for LEMPC makes it attractive for considering the implications of non-deterministic inputs on stability guarantees
 - Initial investigations of closedloop stability of quantum computing-implemented inputs should focus on simple quantum computing algorithms

State MeasurementControl Action0000111100011110

1010

0010

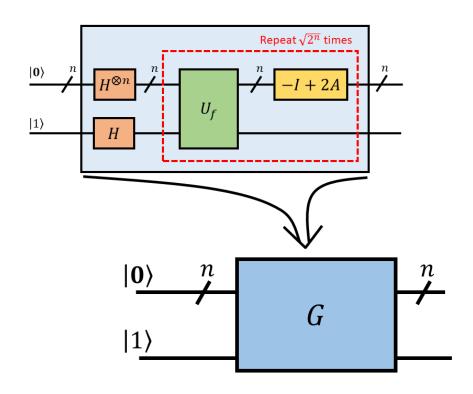
Table 1: LEMPC solution lookup table

• Consider LEMPC solutions in a look-up table

- ♦ For relating to quantum computing, must express state measurements and inputs in binary
- ⋄ Requires quantization of state measurements for LEMPC
- ♦ Also quantize control actions output by LEMPC

SEARCHING AN LEMPC LOOKUP TABLE VIA MODIFIED GROVER'S SEARCH

- Grover's search algorithm is a quantum computing algorithm for searching an unsorted list (Yanofsky and Mannucci, Cambridge University Press, 2008)
- A modified version of Grover's algorithm could be used to search the LEMPC lookup table
 - Not efficient for solving this problem
 - Show how non-deterministic inputs can be generated by a quantum computing algorithm tied to LEMPC



- Modified Grover's algorithm implementation strategy:
 - ♦ Use a series of controlled Grover blocks to represent the state/input pairings
 - \diamond Measurements return the "correct" input with probability λ

IMPLICATIONS FOR CLOSED-LOOP STABILITY

- Probability of obtaining the expected control action from Grover's algorithm: λ
- Consider x(t) and $\bar{x}(t) \in \Omega_{\rho_e}$
 - \diamond Control action computed by the LEMPC on a classical computer would maintain $x(t_k)$ and $\bar{x}(t_k)$ in Ω_{ρ} for $t \in [t_k, t_{k+1})$
 - \diamond The modified Grover algorithm would return the same control action as the classical computer with probability λ
 - ♦ Conclusion:

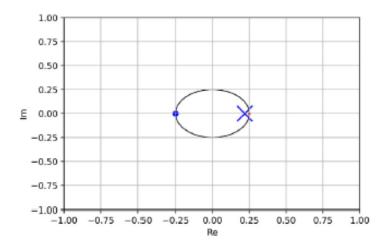
$$\triangleright \mathbf{P}(x(t), \bar{x}(t) \in \Omega_{\rho} \forall t \in [t_k, t_{k+1})) \ge \lambda$$

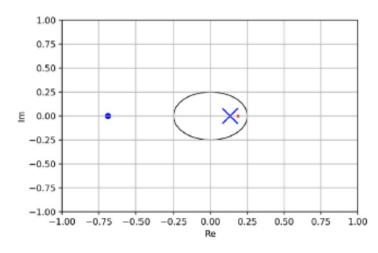
- Consider x(t) and $\bar{x}(t) \in \Omega_{\rho}/\Omega_{\rho_e}$
 - \diamond Control action computed by the LEMPC on a classical computer would maintain $x(t_k)$ and $\bar{x}(t_k)$ in Ω_{ρ} for $t \in [t_k, t_{k+1})$
 - \diamond The modified Grover algorithm would return the same control action as the classical computer with probability λ
 - ♦ Conclusion:

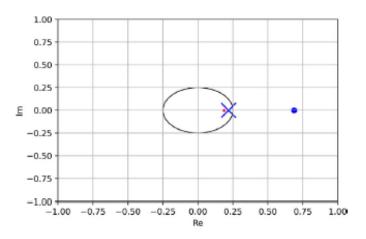
$$ightharpoonup \mathbf{P}(x(t), \bar{x}(t) \in \Omega_{\rho} \forall \ t \in [t_k, t_{k+1})) \geq \lambda$$

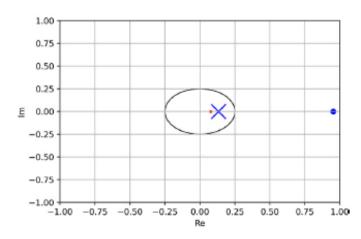
AMPLITUDE AMPLIFICATION

- Amplitudes: c_0 and c_1 in $c_0 |0\rangle + c_1 |1\rangle$
- Modify amplitude to change the probability of measuring the qubits in a certain state









AMPLITUDE AMPLIFICATION AND MPC

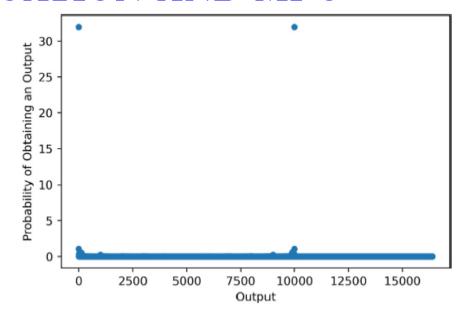
• MPC-like optimization problem

$$\max_{u \in S(\Delta)} \quad \tilde{x}(t_{k+N})$$
s.t.
$$\dot{\tilde{x}}(t) = \tilde{x}(t) + u(t)$$

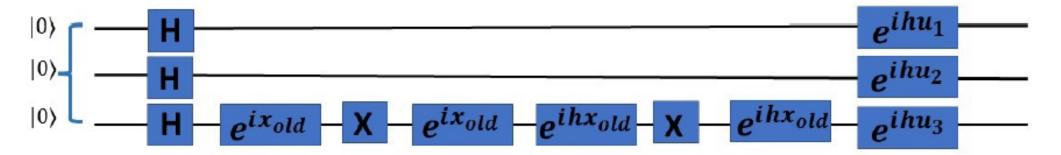
$$\tilde{x}(t_k) = x(t_k)$$

$$u(t) \in [-5, -4, \dots, 3, 4]$$

- Solve with amplitude amplification strategy (D. Koch et al., Entropy, 2022)
 - ♦ Solutions to the integer program in the phases of a quantum operator
 - Raise probability of measuring qubits in a state related to optimization solution



- Superposition-based parallelization of numerical integration
 - \diamond One integration step: $x_{new} = x_{old} + h(x_{old} + u)$



CONCLUSIONS

- Next-generation manufacturing values flexibility and profitability
 - ♦ Facilitated by automation advances such as economic model predictive control
 - ♦ Flexible and profitable systems may not be secure
 - ▶ Attacks on control systems may undermine process safety
- Integrated detection and control policies geared toward nonlinear systems have potential to enable attacks of various types to be detected before causing safety issues
 - ⋄ Requires sufficient control-theoretic conditions
 - ♦ May require at least some sensors to be secure
 - ▶ Handling attacks after detection likely requires some actuators to be secure
- Fundamental notions of cyberattack-resilience and discoverability for nonlinear systems provide insights into potential future directions for securing controllers
- Quantum computing provides another interesting potential direction for the future of next-generation manufacturing
 - ♦ Control theory and practice require further exploration to determine if benefit exists for quantum computing-implemented control

ACKNOWLEDGEMENTS

• Financial support the National Science Foundation CBET-1839675, CBET-2143469, and CNS-1932026, the Air Force Office of Scientific Research award number FA9550-19-1-0059, the Wayne State University University Research Grant, Wayne State University Engineering's Research Opportunities for Engineering Undergraduates program, Wayne State Grants Boost funding, and Wayne State University startup funding is gratefully acknowledged. This research was supported in part by the Air Force Research Laboratory Information Directorate, through the Air Force Office of Scientific Research Summer Faculty Fellowship Program®, Contract Numbers FA8750-15-3-6003, FA9550-15-0001 and FA9550-20-F-0005. Effort supported by the Air Force under MOU FA8750-19-3-1000 and PIA FA8750-19-3-1000. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of AFRL. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing official policies or endorsements, either expressed or implied, of the Air Force or the U.S. Government.