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A Primer on Nonlinear Process Control
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• Standard language: State-space form

• Problems in a workflow

Model
(Equations)

Response 
(Data)

Controller

Modeling

Dynamical 
analysis

System 
Identification

Controller 
Synthesis

1. State observation

2. State feedback law

3. Adaptation for uncertainties

Isidori, A. (1985). Nonlinear control systems. Springer. 
Sontag, E. D. (2013). Mathematical control theory: deterministic finite dimensional systems. Springer.



Data-Driven Control: Use of Machine Learning
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• Different ideas of using ML in control

– Modeling – sparse, kernel, neural methods

– Monitoring – fault detection and performance maintenance

– Model-free control

Control

Data

Tang, W., & Daoutidis, P. (2022). Data-driven control: Overview and perspectives. In 2022 American Control Conference (ACC) (pp. 1048-1064).
Soudbakhsh, D., et al. (2023). Data-driven control: Theory and applications. In 2023 American Control Conference (ACC) (pp. 1922-1939).

System 
identification

Model Controller

Data

Machine 
learning

Control-relevant information

???

• Why model-free control?

1. Technical factors – faster workflow, utilization of simulated/operational data

2. Human factors – loss of workforce, need for time flexibility, accessibility to advanced control system

3. Personal perception – model-based control is error-prone (not “fool-proof”)



Towards Data-Driven Nonlinear Control
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Nonlinear Behaviors

Conservation ChaosBifurcation

Latent states Dynamic modes

Observation / Estimation

Plant

K*

Controller synthesis

Decision Making

Optimization

Ramifications

 Molecular dynamics

 Multiphase flow

 Dynamical analysis of 

optimization algorithms
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I. Data-Driven Nonlinear State Observation

Papers: 
Tang, W. (2023). Data-driven state observation for nonlinear systems based on online learning. AIChE Journal, e18224. 
Tang, W. (2024). Synthesis of data-driven nonlinear state observers using Lipschitz-bounded neural networks. To appear on ACC. arXiv:2310.03187.
Weeks, C., & Tang, W. (2024). Data-driven nonlinear state observation using video measurements. To appear on 12th ADCHEM. arXiv:2311.14895. 
Woelk, M., & Tang, W. (2024). Manuscript in preparation. 
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(Model-Based) State Observation: Classical Results

• Linear systems

– Luenberger observer: LTI dynamics + linear output map 

where T† is the left-pseudoinverse of T, determined by a 
Sylvester equation
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⊇

• Special case: “Kalman filter”

– Let . Then        , and 

Luenberger, D. G. (1964). IEEE Trans. Mil. Electr., 8(2), 74-80.
Kazantzis, N., & Kravaris, C. (1998). Syst. Control Lett., 34, 241-247.

• Nonlinear systems

– Kazantzis-Kravaris-Luenberger observer: LTI dynamics + nonlinear output map 

where T† is the left-pseudoinverse of a nonlinear transform T, determined by the PDE system 
[which can be solved (with some difficulties) if the model (F, H) is known.]



1. Lipschitz-Bounded Neural Observer

• Neural KKL observer: Assign the linear observer dynamics and train the static mapping
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Ramos, L. C. et al. (2020). IEEE 59th CDC, 5435-5442.
Miao, K., & Gatsis, K. (2023). 5th L4DC, 208-219.
Niazi, M. U. B., et al. (2023, May). ACC, 3048-3055.– Limitation: Overfitted neural network  generalization loss

– Solution: Constraining the Lipschitz constant Lip(NNθ) ≤ L

⇒

1 – δ: confidence
ε: initialization effect, practically 0
hA,B: sensitivity to noise, σ: noise

gen. 
loss

train. 
loss

Theorem. Probabilistic guarantee on the mean squared state observation error:

A special NN architecture, see Wang, R., & Manchester, I. (2023). ICML (pp. 36093-36110) 
(Easy to implement with PyTorch.)

• Why?

• How?



1. Lipschitz-Bounded Neural Observer

• Example: Lorenz system
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A = diag(–8, –4, –2, –1) 

B = [1; 1; 1; 1]

Linear dynamics of 
KKL observer

L

L = 10

• When the environment is highly noisy, the Lipschitz 
bound has a severe effect on the generalization loss

• Increasing noise causes more noisy observations and 
sometimes incorrect directions of evolution



2. Online Least Squares for a Chen-Fliess Observer
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• Neural networks – nonconvex and stochastic training, too many parameters

• Query: Linear parameterization of observer, amenable to convex optimization (least squares)

– Much simpler, more efficient, and more reliable performance

• KKL observer as an input-affine system:

– Recursive integrals– Lie derivatives

Coefficients to 
be estimated

Input features 
of the data

Data labels 
for training

: A multi-index of length k
from {0, 1, 2, …, m} 

• Chen-Fliess series: Within a time window Δ ∈ 0, ഥΔ :

Now amenable to 
linear regression!



2. Online Least Squares for a Chen-Fliess Observer

• Truncation to a finite order K of terms
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Coefficients to be estimated Input features

• Update the solution in continuous time using 
online gradient descent

Theorem. Bound on mean squared observation error

The bound depends on (i) truncation length, (ii) intensity of persistent excitation, and (iii) 
horizon length, in addition to (iv) variation rate of the true states. 

• A least squares problem: moving horizon with fixed length 



2. Online Least Squares for a Chen-Fliess Observer

• Example 1: Brusselator
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Online optimized Chen-Fliess series tracks the true states very well, especially when the states vary slowly.

• Example 2: Lorenz system



3. Observer without State Information 

• Previously: Supervised learning (regression) by empirical risk minimization – need to have labels

– “Somehow the true states are available for training, although in operations they must be estimated.”

– A paradoxical setting – we must have a high-fidelity simulator – then why not model-based?
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• Now: No labels, unsupervised learning

– Dimensionality reduction problem: Find a mapping z ↦ π, so that π and x are “equivalent”

• Anyways, the concept of “states” is artificial and transformable by a diffeomorphism

• Need π to be diffeomorphic to x: a very weak requirement that can be satisfied by PCA/kernel PCA



3. Observer without State Information 
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• Belousov-Zhabotinsky reactions (well-stirred)

– Measured output signal: Colors of 300 pixels in a video

• https://www.youtube.com/watch?v=ieh9qIkkMJQ

– KKL observer: A = 1200th order diagonal (placed pole to 
assign time constants), B = 1200-by-300, T† by PCA

• Observed state orbit exhibits a “bow-tie” shape, consistent 
with the true state orbits

• The cycles are slowly decaying – a physical reality honestly 
reflected by the data (but not captured by the model)

Simulated 
by model

Estimated 
by observer

https://www.youtube.com/watch?v=ieh9qIkkMJQ
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I. Data-Driven Nonlinear State Observation

Summary

• State observation is cast as a machine learning problem and becomes easier

– Convex online optimization / nonconvex optimization done carefully

– Satisfactory practical performance

• Potential applications to industrial systems with massive real-time data (esp. cameras)

– Exploiting data to see “where the system is”  Monitoring and control

– Combined with any control strategy that assumes state availability (e.g., RL/MPC)

• Ongoing directions

– Observer for non-autonomous systems dx/dt = f(x, u), y = h(x, u)
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II. Dissipativity Learning Control [DLC]

Papers: Tang, W., & Daoutidis, P. 
(2019). Input-output data-driven control through dissipativity learning. American Control Conference (pp. 4217-4222).
(2019). Dissipativity learning control (DLC): A framework of input–output data-driven control. Comput. Chem. Eng., 130, 106576.
(2021). Dissipativity learning control (DLC): Theoretical foundations of input–output data-driven model-free control. Syst. Control Lett., 147, 104831.
Tang, W., & Woelk, M. (2023). Dissipativity learning control through estimation from online trajectories. American Control Conference (pp. 3036-3041).

States

Inputs

Outputs

Supply rate
s y, u

Storage
V(x)

Dissipativity

Dissipativity-based 
controller



Dissipativity: Control-Relevant Information
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Rojas, O. J., Bao, J., & Lee, P. L. (2008). J. Process Control, 18, 515-526. 
Brogliato, B. et al. (2020). Dissipative systems analysis and control: Theory and applications (3rd ed.). Springer.

• Relation to stability and performance

– Stabilizing control: find u = κ y such that s y, κ y ≤ 0.

• ሶV ≤ 0  closed-loop Lyapunov stability
– L2-gain: u → y has a finite L2-gain bounded by β1/2, if

s(y, u) ≤ β u 2 − y 2

• Example: L2-optimal control for disturbance rejection 

– Variable: Controller gain K

– Objective: L2-gain of d → (y, u)

– A multi-convex semidefinite programming problem



(Model-Based) Dissipativity Analysis
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Alonso, A. A., & Ydstie, B. E. (2001). Automatica, 37, 1739-1755.
Hangos, K. M., et al. (2001). AIChE J., 47, 1819-1831.

• Question: How do we know the dissipativity of a system?

– Kalman-Yakubovich-Popov (KYP) lemma

• Linear matrix inequality (LMI) / functional inequalities

– Thermodynamic analysis

• Difficult to find accurate thermodynamic relations

• Conservative, suboptimal (e.g., fluid flow is not modeled)
B. E. Ydstie K. M. Hangos

Z

S

Z*

w*

Legendre transform

Intensive properties

Extensive properties

Storage Inputs: 
flows

≥ 0 
(Onsager)

problematic term 
(assume small)

Outputs: 
T, P, μ



Data-Driven Dissipativity Learning: General Form

• Dissipative inequality in a duality form

– Dissipativity function m = (V, s) (system property to be learned), defined on a function space 

– Evaluation functional g
x,x+,u,y

(specified by data points), defined on its dual space
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O

• Dual dissipativity set: All evaluation functionals from the “system population”

• Dissipativity set: All admissible dissipative properties

Estimate the 
dual dissipativity 
set from data

Compute the 
dual cone as the 
dissipativity set



Data-Driven Dissipativity Learning: Quadratic Supply

• Linear parameterization

Quadratic form, 
Parameters: Π or vec(Π)

• Definitions

– Dissipativity parameters Π ∈ Dissipativity set

• Property of the system to be learned

– Dual dissipativity parameters Γ ∈ Dual dissipativity set S

Γ = න
0

T
y(t)

u(t)
y(t)⊤ u(t)⊤ dt ≽ 0

• Property of data

– For any trajectory starting from 0, 

vec Π ⊤vec(Γ) = trace(Π⊤Γ) =: Π, Γ ≥ 0

• Dissipativity learning procedure
1. Collect Γ sample for trajectories starting from 0

2. Estimate dual dissipativity set S

3. Dual cone of dual dissipativity set S   * = dissipativity set

19



Example 1: Polymerization Reactor
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• Performance of DLC
• Disturbances as Orstein-Uhlenbeck random 

processes in continuous time
• K = 0 vs DLC-P controllers with 11 

independent components and confidence levels 
0.85, 0.90, 0.95, 0.99

Cooling 
water (u2)

Initiator 
feed (u1)

Monomer 
feed

Inlet conc. (d1)

Inlet temp. (d2)

Average molar 
mass (y2)

Temperature 
(y1)

Polymer 
product

Daoutidis, P., Soroush, M., & Kravaris, C. (1990). AIChE J., 36(10), 1471-1484.



Example 2: Gas-Phase Reactor
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• Performance of DLC
• K = 0 vs DLC-PID with 5 independent 

components and confidence levels 0.85, 
0.90, 0.95, 0.99

Sinusoidal inputs

Periodic piecewise 
constant inputs

Özgülşen, F., et al. (1992). Chem. Eng. Sci., 47(3), 605–613.
Chen, C.-C., et al. (1994). Can. J. Chem. Eng., 72(4), 672–682.

Reference trajectories for tracking control

Unknown

model



Example 3: Two-Phase Reactor
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Kumar, A., & Daoutidis, P. (1995). AIChE J., 41(3), 619-636.

Controller Open-Loop DLC-PID DLC-PI DLC-P Linear SysID + LQG

ISE + ISC 35.0907 2.5846 2.4316 2.5345 2.6766
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II. Dissipativity Learning Control [DLC]

Summary

• Dissipativity learning as a machine learning problem and becomes easier

– Estimating a data distribution and finding its dual cone 

– Convex/multiconvex optimization for control performance

• Theoretical framework and preliminary works  Much more to be done to realize its potential

• Advantages of DLC as a technology [Ongoing research to establish them]

– Inherently physics-informed, stability and performance-guaranteed

– Structured and scalable to large systems 

– Flexible with big data (truly nonlinear) or small data (comparable with linear identification)



Optimization Algorithms as Dynamical Systems

• Convex optimization min f(x)

– First-order dynamics (gradient flow)

• Forward difference  Gradient descent algorithm

• Backward difference  Proximal algorithm [non-smooth] 

– Second-order dynamics 

• With vanishing damping  Nesterov’s momentum

• With Hessian damping  Attouch and Peypouquet

• …  

• Benefits of using dynamical analysis in optimization algorithms

– Intuitive understanding of algorithm  Creation of new algorithms / combinations

– Control-theoretic convergence proofs  Tuning of algorithm hyperparameters
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Su, W., Boyd, S., & Candès, E. J. (2016). J. Mach. Learn. Res., 17(153), 1-43.
Attouch, H., & Peypouquet, J. (2019). Math. Program., 174, 391-432.

Lessard, L., Recht, B., & Packard, A. (2016). SIAM J. Optim., 26(1), 57-95.
Boţ, R. I., & Nguyen, D. K. (2023). SIAM J. Numer. Anal., 61(6), 2813-2843.



Global Optimization as Dynamical Systems … 

• Postulate – Dynamics on a function space?

– Bayesian optimization: Dynamics of (m, k)

– Branch-and-bound (and other): Dynamics of (UB, LB) 

on the feasible region Ω
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m(x)
f(x)

k(x, y)

Iteration 

Iteration 



Data-Driven Dynamical Analysis for Optimization

• Koopman approach 

– Nonlinear dynamics f on X (Euclidean or function spaces) … 
might be complicated

– But consider the dynamics on its dual space X*

– For any functional φ ∈ X*, φ↦ φ ∘ f specifies a linear operator 
– called Koopman operator
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f

Williams, M. O., Kevrekidis, I. G., & Rowley, C. W. (2015). J. Nonlin. Sci., 25, 1307-1346.
Mauroy, A., Susuki, Y., & Mezić, I. (2020). Koopman operator in systems and control. Springer.

Dietrich, F., Thiem, T. N., & Kevrekidis, I. G. (2020). SIAM J. Appl. Dyn. Syst., 19, 860-885.
Redman, W. T., et al. (2022). IEEE CDC (pp. 6006-6011).

Data-driven approximationA nonlinear system is in fact a linear one in its (infinite-dimensional) dual space. 

• Dynamical mode analysis
– Eigenfunctionals: linearly evolving modes

• Contractions, oscillations, conservations

– Identifying dynamic modes from data  Info about algorithm behavior

Data: snapshots of the dynamics

Novel algorithms/proofs?

Auto-tuning/selection?

Interpretability?

…
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THANK YOU!


