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Process Operability Concepts

3[1] Gazzaneo V. and Lima F. V. (2019). Ind. Eng. Chem. Res.
[2] Vinson, D. R. and Georgakis, C. (2000).  J. Process Control.

Process operability: A nonlinear measure of controllability and achievability
• Process Operability was introduced as a viable alternative to the sequential tasks of assessing process design and 

control, integrating both in the early design phase of industrial processes[1]

• Fundamental initial idea: “A measure of output controllability”[2]

• Achievability of process design and control objectives are quantified using defined operating regions that are calculated 
considering 

• Available inputs, achievable outputs
• Expected disturbances
• Desired outputs/inputs of industrial processes

Available Input Set (AIS)

Process model (M)
First principles, process simulator, surrogate

Achievable Output Set (AOS)
��𝑢𝑢 ∣ 𝑢𝑢𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑢𝑢𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝑢𝑢1𝑚𝑚𝑚𝑚𝑚𝑚 𝑢𝑢1𝑚𝑚𝑚𝑚𝑚
𝑢𝑢2𝑚𝑚𝑚𝑚𝑚𝑚

𝑢𝑢2𝑚𝑚𝑚𝑚𝑚𝑚

𝑦𝑦 = 𝑀𝑀(u, d)
Under nominal disturbances
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Available Input Set (AIS)Achievable Output Set (AOS)

Process inverse mapping

𝑀𝑀−1

Desired Output Set (DOS) Desired Input Set (DIS)
� �𝑦𝑦 ∣ 𝑦𝑦𝑖𝑖min ≤ 𝑦𝑦𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖max

𝑦𝑦1min 𝑦𝑦1max
𝑦𝑦2min

𝑦𝑦2max

𝐮𝐮 = 𝑀𝑀−𝟏𝟏(𝑦𝑦, d), d fixed
Under nominal disturbances
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Available Input Set (AIS)

Desired Input Set (DIS)

OI =
𝜇𝜇 AOS ∩ DOS

𝜇𝜇 DOS

OI =
𝜇𝜇 AIS ∩ DIS

𝜇𝜇 DIS

Operability
Index (OI)

𝝁𝝁 = quantification of regions (length, 
area, volume, hypervolume)

OI = 1OI < 1

OI < 1OI = 1

Desired Output Set (DOS)

OI main features:
1.Inherently nonlinear measure
2.Independent of the type of the 
controller used and inventory 
control layer[1]

3.Can be used systematically to 
rank competing designs[2] and/or 
control structures

4.Allows for disturbances’ 
evaluation under “worst-case” 
scenario situations
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OI =
𝜇𝜇 AOS ∩ DOS

𝜇𝜇 DOS

OI =
𝜇𝜇 AIS ∩ DIS

𝜇𝜇 DIS

Operability
Index (OI)

Introducing  the effect of disturbances – Expected 
Disturbance Set (EDS)

Achievable Output Set (AOSu(d))

Desired Output Set (DOS)

𝐀𝐀𝐀𝐀𝐀𝐀 = �
𝐝𝐝∈𝐄𝐄𝐄𝐄𝐄𝐄

𝐀𝐀𝐀𝐀𝐒𝐒𝐮𝐮 𝐝𝐝

Available Input Set (AIS)

Desired Input Set (DISy(d))

𝐃𝐃𝐃𝐃𝐃𝐃 = �
𝐝𝐝∈𝐄𝐄𝐄𝐄𝐄𝐄

𝐃𝐃𝐃𝐃𝐒𝐒𝐲𝐲 𝐝𝐝

Inverse mapping

𝑀𝑀−1

DOS → DIS

OI quantification

Main computational operations required

Multimodel approach[2]

Nonlinear programming 
(NLP)-based approach[1]
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Achievable Output Set (AOS)

Desired Output Set (DOS)

Inverse mapping OI quantification
Multimodel approach[2]Nonlinear programming-based (NLP) approach[1]

∅k = min
u𝑘𝑘
∗ �

𝑗𝑗=1

𝑛𝑛

�y𝑗𝑗,𝑘𝑘 − y𝑗𝑗,𝑘𝑘
∗ y𝑗𝑗,𝑘𝑘

2

s.t: Process model
u𝑘𝑘min ≤ u𝑘𝑘∗ ≤ u𝑘𝑘max

𝐜𝐜1 u𝑘𝑘∗ ≤ 0

Minimize the distance between desired (𝑦𝑦∗) and actual (𝑦𝑦) operation for 
each AOS/DOS point

Process model can be substituted by paired polytopes 𝑃𝑃𝑘𝑘 = 𝑃𝑃𝑘𝑘𝑢𝑢,𝑃𝑃𝑘𝑘
𝑦𝑦

Available Input Set (AIS)

Desired Input Set (DIS)

Achievable Output Set (AOS)

AIS

[1] Carrasco J. C. and Lima F.V. (2017). Comput. Chem. Eng. 
[2] Gazzaneo V. and Lima. F.V. (2019). Ind. Eng. Chem. Res.

Takeaways:  
• Shift the output points as close as possible to feasible operation
• Useful to search for new AIS unexplored regions to give insights 

about process feasibility
• Inverse mapping subject to process constraints

𝑃𝑃1−3
𝑦𝑦 𝑃𝑃1−3𝑢𝑢

Takeaways: 
• Replacing nonconvex regions with paired polytopes allows efficient OI 

computation and representation of the operability sets
• OI can be used to rank competing designs and control structures
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• Mapping of variables in 
process systems 
engineering (PSE) plays 
a vital role in additional 
important applications:

• Optimization of process 
design/operating 
conditions[1]

• Operability analysis[2]

• Parameter estimation[3]

• Control structure[4] 
selection

[1] Biegler L. T. (2010). SIAM.
[2] Vinson D. R. and Georgakis, C. (2000). Journal of Proc. Control.
[3] Aster R. C., Borchers B., Thurber C. H. (2018). Elsevier.
[4] Skogestad S. (2000). Journal of Proc. Control.

Exogenous Inputs
(Feeds/ Disturbances)

Endogenous Inputs
(Manipulated Variables)

Endogenous Outputs
(Controlled State Variables)

Exogenous Outputs
(Product Variables)
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• Mapping of variables in 
process systems 
engineering (PSE) plays 
a vital role in additional 
important applications:

• Optimization of process 
design/operating 
conditions[1]

• Operability analysis[2]

• Parameter estimation[3]

• Control structure[4] 
selection

Exogenous Inputs
(Feeds/ Disturbances)

Endogenous Inputs
(Manipulated Variables)

Endogenous Outputs
(Controlled State Variables)

Exogenous Outputs
(Product Variables)

In the simplest form

𝐹𝐹 𝑋𝑋,𝑌𝑌 = 0
𝐹𝐹:ℝ𝑚𝑚 → ℝ𝑛𝑛

𝐹𝐹: X → 𝑌𝑌

𝒇𝒇(𝑿𝑿)

Domain

Image

(Input space)

(Output space)

𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
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• Forward mapping applications are typically straightforward
• Sensitivity analysis
• Sequential (classic) process design and control

• Inverse mapping applications are more complex
• Inverse problems naturally arise[1]

• General parameter estimation problems[2]

• Optimal operability design regions from desired output specifications[3,4]

• The forward mapping is adequately understood and studied due to 
historical reasons[1], but the inverse is not necessarily

[1] Keller J.B. Inverse problems. (1976) Am Math Mon.
[2] Aster R. C., Borchers B., Thurber C. H. (2018). Elsevier.
[3] Carrasco J. C., Lima F. V. (2017) AIChE Journal.
[4] Carrasco J. C., Lima F. V. (2018) AIChE Journal.
[5] Ceccon F. et al. (2022). Journ. of Machine Learning. Res. 

In the simplest form

𝐹𝐹 𝑋𝑋,𝑌𝑌 = 0
𝐹𝐹:ℝ𝑚𝑚 → ℝ𝑛𝑛

𝐹𝐹: X → 𝑌𝑌

Typical approaches
• “Brute-force” (enumeration) in the forward mapping direction (e.g.,“lookup table”): Feasible when the 

number of simulations/dimensionality are low
• Nonlinear programming-based (NLP)[3,4,5] formulations: Can be computationally expensive

𝒇𝒇(𝑿𝑿)

Domain

ImageDomain

Image
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𝐹𝐹 𝑋𝑋,𝑌𝑌 = 0

𝐹𝐹:ℝ𝑚𝑚 → ℝ𝑛𝑛

𝒇𝒇(𝑿𝑿)

Domain

Image Domain

Image

[1] Folland G. (2002). Advanced Calculus. Prentice Hall.
[2] Baydin A. G. et al. (2018). arXiv.

• Process models are often implicit and 
forward/inverse mapping tasks are needed

• Flexibility between forward and inverse maps 
may be required

• Under sufficient conditions[1], a vector-valued, 
implicit map can be differentiated using the implicit 
function theorem (IFT), but accurate derivatives 
are required

Automatic differentiation (AD) can be employed

∇𝑋𝑋Y = −(∇𝑦𝑦𝐹𝐹)−1𝐽𝐽𝑥𝑥

Effective way of accurately and timely evaluate high-order 
data, when compared against finite-differences and 

symbolic differentiation
AD in a nutshell: Intelligent use of the chain rule in 

computer code:
𝑓𝑓 𝑥𝑥1, 𝑥𝑥2 = 𝑙𝑙n 𝑥𝑥1 + 𝑥𝑥1𝑥𝑥2 − sin 𝑥𝑥2  

̇𝑥𝑥1

̇𝑥𝑥2

̇𝑣𝑣−1

̇𝑣𝑣0

̇𝑣𝑣2

̇𝑣𝑣1 ̇𝑣𝑣4

̇𝑣𝑣3

̇𝑣𝑣5

𝜕𝜕𝑥𝑥2
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑥𝑥1
𝜕𝜕𝑥𝑥1

̇𝑥𝑥2

̇𝑥𝑥1

𝜕𝜕𝑣𝑣1
𝜕𝜕𝑥𝑥1

=
𝑑𝑑 ln 𝑥𝑥1
𝑑𝑑𝑥𝑥1

=
1
𝑥𝑥1

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥1

𝜕𝜕𝑣𝑣2
𝜕𝜕𝑥𝑥1

=
𝑑𝑑 𝑥𝑥1𝑥𝑥2
𝑑𝑑𝑥𝑥1

= 𝑥𝑥2

𝑣𝑣−1,𝑣𝑣0 𝑣𝑣1 𝑣𝑣2 𝑣𝑣3
𝑣𝑣4 = 𝑣𝑣1 + 𝑣𝑣2
𝑣𝑣5 = 𝑣𝑣4 − 𝑣𝑣3

𝜕𝜕𝑣𝑣3
𝜕𝜕𝑥𝑥1

= 0

𝜕𝜕𝑣𝑣5
𝜕𝜕𝑥𝑥1

=
1
𝑥𝑥1

+ 𝑥𝑥2

[2]

𝜕𝜕𝑣𝑣4
𝜕𝜕𝑥𝑥1

=
𝜕𝜕𝑣𝑣1
𝜕𝜕𝑥𝑥1

+
𝜕𝜕𝑣𝑣2
𝜕𝜕𝑥𝑥1

=
1
𝑥𝑥1

+ 𝑥𝑥2

1
𝑥𝑥1

+ 𝑥𝑥2

=



Implicit Mapping - Motivation
• Formulation of a framework for the implicit mapping evaluation employing the implicit function

theorem and automatic differentiation as an alternative to the NLP-based approach
• Recent advances in differentiable programming and automatic differentiation (AD) made

the evaluation of high-dimensional, implicit derivatives a more straightforward task
• If derivatives are readily available, the implicit mapping task can be performed directly via

path integration from the output space to the input space (and vice-versa) with the aid of
the implicit function theorem

• AD does not suffer from problems of finite-differences or symbolic differentiation, such as
• Round-off errors (inaccuracies)[1]

• Expensive calculations (for example, expression swell)[1]

• AD is increasingly popular in open-source programming languages (e.g., Python)
• Google’s JAX[2]

• JAX is becoming an ecosystem for differentiable programming[3]

12
[1] Baydin A. G. et. al. (2018). arXiv.
[2] Bradbury et al. (2018). http://github.com/google/jax.
[3] Vadivelu N. (2023). https://github.com/n2cholas/awesome-jax.



Proposed Approach - Inverse mapping[1] 

[1] Alves V. , Kitchin J. R. and Lima F. V. (2023). AIChE Journal.
[2] Pinder T. and Dodd D. (2022). Journal of Open-Source Soft.

Implicit function theorem for a single variable function:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = −

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Can be expanded for any vector-valued, implicit 
functions of m inputs and n outputs (𝐹𝐹:ℝ𝑚𝑚 → ℝ𝑛𝑛):

∇𝑦𝑦𝑋𝑋 = −𝐽𝐽𝑥𝑥−1 ∇𝑦𝑦𝐹𝐹

Set the model in implicit form
𝐹𝐹 𝑋𝑋,𝑌𝑌 = 0

And use JAX’s syntax
If a differentiable model cannot be 
developed, employ a differentiable 
surrogate[2]

Parametric equations 
can be used:
• Circles
• Rectellipses

Google’s JAX supports AD of any 
dimension:
• Jacobians
• Hessians

13



Opyrability[1] Development: Motivation
• Programming aspects of Process Operability calculations

• NLP-based approach: needs reliable NLP solvers 
• Multimodel approach: computational geometry packages for boolean operations of sets 

(intersection, union, difference) are needed – non-trivial task
• Recent advances in inverse mapping using AD

14[1] Alves V., Dinh S., Kitchin J. R., Gazzaneo V., Carrasco J. C. and Lima F. V. (2024). Journ. of Open Source Soft.



Opyrability[1] Development: Motivation
• Programming aspects of Process Operability calculations

• NLP-based approach: needs reliable NLP solvers 
• Multimodel approach: computational geometry packages for boolean operations of sets 

(intersection, union, difference) are needed – non-trivial task
• Recent advances in inverse mapping using AD

• Current CODES MATLAB App Project[2] uses 
• A modified version of Nelder-Mead downhill simplex with penalty functions to deal with 

nonlinear inequality/equality constraints[3]

• Multi-parametric toolbox (MPT)[4] for computational geometry calculations
• MPT has challenges when scale of the OI required calculations involve dimensions higher than 6-7

• Nelder-Mead simplex with penalty functions might not be the most robust choice (derivative-
free)

• The MATLAB App Project is open-source, but user needs a MATLAB license

15
[1] Alves V., Dinh S., Kitchin J. R., Gazzaneo V., Carrasco J. C. and Lima F. V. (2024). Journ. of Open Source Soft.
[2] Gazzaneo V., Carrasco J.C., Vinson D. R. and Lima F. V. (2020). Ind. Eng. Chem. Res.
[3] D’Errico J. (2012). MATLAB File exchange
[4] Multi-Parametric Toolbox 3. (2019). https://www.mpt3.org/



Opyrability[1] Development: Motivation

16
[1] Alves V., Dinh S., Kitchin J. R., Gazzaneo V., Carrasco J. C. and Lima F. V. (2024). Journ. of Open Source Soft.
[1] Wächter A. and Biegler L. T. (2006). Math. Prog.
[2] Lima F.V. And Georgakis C. (2010). Journal of Proc. Cont.
[3] Carrasco J. C. and Lima F.V. (2017). Comput. Chem. Eng. 
[4] Gazzaneo V. and Lima. F.V. (2019). Ind. Eng. Chem. Res.

• Current effort: recreate the app project as a Python package (namely Opyrability
– Python-based Process Operability) with enhanced features and recent 
developments

• Features of the proposed toolbox
• Free and open-source programming language (Python)
• Easy access to up-to-date, state-of the art optimization solvers (IPOPT[2], etc.)
• Easier code maintainability
• Collaborative/community-driven approach (hosting on GitHub)

• Facilitate academia access, bugfixes, suggestions, pull requests, issues, etc.

• Process Operability is a versatile field with broad applications: Python 
implementation can ease its dissemination in academia/industry 

• Design and control structure synthesis[3]

• System modularization[4,5]

• Process intensification[4,5]
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[1] Alves V., Dinh S., Kitchin J. R., Gazzaneo V., Carrasco J. C. and Lima F. V. (2024). Journ. of Open Source Soft.
[2] CYIPOPT GitHub Repository. (2022). https://github.com/mechmotum/cyipopt 
[3] Bradbury et al. (2018). http://github.com/google/jax
[4] Storn R. and Price K. (1997). Journ. of Glob. Opt.
[5] Polytope GitHub Repository. (2022). https://github.com/tulip-control/polytope

• NLP-based approach
• Different solver options available: 

• CYIPOPT[2] (Python wrapper around IPOPT): compatible with automatic differentiation (Google’s JAX[3])
• Differential evolution[4]

• Sequential quadratic programming
• Nelder-Mead simplex

• Multimodel approach
• Currently relies on Caltech’s Polytope[5] package for computational geometry operations of polytopes 

(intersection/union/difference)
• All fundamental operations implemented (OI calculation and multimodel representation)

• Implicit mapping
• Uses JAX as AD library

• Current state: built from scratch using mainly numpy, scipy, supporting the main Process Operability 
calculations

• C/C++ codes are “indirect” dependencies due to polytope and IPOPT
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18[1] Alves V., Dinh S., Kitchin J. R., Gazzaneo V., Carrasco J. C. and Lima F. V. (2024). Journ. of Open Source Soft.

Python C/C++

IPOPTqhullnumpyscipyCYIPOPTpolytope

opyrability

NLP/MultimodelNLP-basedMultimodel

JAX

Programming language

glpk

Implicit mapping



Case Study: Direct Methane Aromatization 
Membrane Reactor (DMA-MR)

19[1] Carrasco J. C. and Lima F.V. (2017). Comput. Chem. Eng.

Tasks and set up:
• Employ NLP-based approach to give insights about 

feasible designs
• Employ Multimodel approach to calculate the OI for a 

fixed design
• Employ Implicit mapping to inversely map design 

regions and disturbances
• Inputs – NLP-based and Implicit mapping:

• Tube length [cm]
• Tube diameter [cm]

• Inputs – Multimodel and Implicit mapping:
• Shell and tube flow rates [mg/h]

• Outputs and desirable operating spaces:
• Benzene production [mg/h] 
• Methane conversion [%]

• Process constraints:
• Plug-flow operation: length/diameter ≥ 30
• Maximum tube length: length < 300 [cm]

• Production of high-value added chemicals (C6H6 and H2) 
from natural gas

• Combination of separation and reaction: higher conversion 
due to the selective H2 removal[1] (Le Chatelier’s principle)



Case Study: Direct Methane Aromatization 
Membrane Reactor (DMA-MR) - Multimodel

20

Operability Index (OI) using opyrability – “Control” problem, AIS has manipulated variables for a fixed MR design (tube length = 
30 cm and tube diameter = 1 cm)

Importing proposed 
tool and DMA-MR 
model

Defining AIS/DOS 
bounds

Running 
multimodel 
representation and 
evaluating OI

Features:
• Easy setup for users
• Minimum knowledge about computational 

geometry required
• Seamless toolbox readability



Case Study: Direct Methane Aromatization 
Membrane Reactor (DMA-MR) – Inverse mapping

21

Operability analysis using opyrability – Inverse mapping, AIS has design variables for a nominal operating point

Importing proposed 
tool and DMA-MR 
model

Defining AIS/DOS 
bounds and NLP 
initial estimate

Running NLP-
based approach 
with IPOPT/JAX

Defining 
constraints

Features:
• Highly customizable NLP solver options
• Consistent syntax among modules
• Seamless toolbox readability



Case Study – Implicit Mapping
• Direct Methane Aromatization Membrane Reactor (DMA-MR)

22

Main Objective: Identify design regions ensuring 
desired benzene production and natural gas 
conversion, addressing the inverse problem in 
process operability analysis[2]

Problem set up:
• Input variables (Image – Desired Input Set[2]):

• Tube length [cm]
• Tube diameter [cm]

• Outputs variables (Domain – Desired Output Set[2]):
• Benzene production [mg/h] 
• Methane conversion [%]

[1] Carrasco J. C. and Lima F.V. (2017). Comput. Chem. Eng.
[2] Vinson D. R. and Georgakis C. (2000). Journal of Proc. Control.

• Production of high-value added chemicals (C6H6 and H2) 
from natural gas

• Combination of separation and reaction: higher conversion 
due to the selective H2 removal[1] (Le Chatelier’s principle)

• First-principles model defined by a set of 8 ordinary 
differential equations (for a distributed system)



Case Study – Implicit Mapping
• Direct Methane Aromatization Membrane Reactor (DMA-MR)

23[1] Bradbury et al. (2018). http://github.com/google/jax.
[2] Kitchin J. R. (2023). https://pointbreezepubs.gumroad.com/l/pycse-ad.

• First-principles model defined by a set of 8 ordinary 
differential equations (for a distributed system)

𝒅𝒅𝑭𝑭𝒕𝒕,𝑪𝑪𝑯𝑯𝟒𝟒
𝒅𝒅𝒅𝒅

= 𝜼𝜼𝒓𝒓𝟏𝟏𝑨𝑨𝒕𝒕 −
𝑸𝑸

𝜶𝜶𝑯𝑯𝟐𝟐/𝑪𝑪𝑯𝑯𝟒𝟒
𝑷𝑷𝒕𝒕,𝑪𝑪𝑯𝑯𝟒𝟒
𝟏𝟏/𝟒𝟒 − 𝑷𝑷𝒔𝒔,𝑪𝑪𝑯𝑯𝟒𝟒

𝟏𝟏/𝟒𝟒 𝝅𝝅𝑫𝑫𝒕𝒕,

𝒅𝒅𝑭𝑭𝒕𝒕,𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒
𝒅𝒅𝒅𝒅

= −𝜼𝜼
𝒓𝒓𝟏𝟏
𝟐𝟐
𝑨𝑨𝒕𝒕 + 𝜼𝜼𝒓𝒓𝟐𝟐𝑨𝑨𝒕𝒕 −

𝑸𝑸
𝜶𝜶𝑯𝑯𝟐𝟐/𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒

𝑷𝑷𝒕𝒕,𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒
𝟏𝟏/𝟒𝟒 − 𝑷𝑷𝒔𝒔,𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒

𝟏𝟏/𝟒𝟒 𝝅𝝅𝑫𝑫𝒕𝒕, 

𝒅𝒅𝑭𝑭𝒕𝒕,𝑯𝑯𝟐𝟐
𝒅𝒅𝒅𝒅

= −𝜼𝜼𝒓𝒓𝟏𝟏𝑨𝑨𝒕𝒕 − 𝜼𝜼𝒓𝒓𝟐𝟐𝑨𝑨𝒕𝒕 − 𝑸𝑸 𝑷𝑷𝒕𝒕,𝑯𝑯𝟐𝟐
𝟏𝟏/𝟒𝟒 − 𝑷𝑷𝒔𝒔,𝑯𝑯𝟐𝟐

𝟏𝟏/𝟒𝟒 𝝅𝝅𝑫𝑫𝒕𝒕,

𝒅𝒅𝑭𝑭𝒕𝒕,𝑪𝑪𝟔𝟔𝑯𝑯𝟔𝟔
𝒅𝒅𝒅𝒅

= −𝜼𝜼
𝒓𝒓𝟏𝟏
𝟑𝟑
𝑨𝑨𝒕𝒕 −

𝑸𝑸
𝜶𝜶𝑯𝑯𝟐𝟐/𝑪𝑪𝟔𝟔𝑯𝑯𝟔𝟔

𝑷𝑷𝒕𝒕,𝑪𝑪𝟔𝟔𝑯𝑯𝟔𝟔
𝟏𝟏/𝟒𝟒 − 𝑷𝑷𝒔𝒔,𝑪𝑪𝟔𝟔𝑯𝑯𝟔𝟔

𝟏𝟏/𝟒𝟒 𝝅𝝅𝑫𝑫𝒕𝒕,

𝒅𝒅𝑭𝑭𝒔𝒔,𝑪𝑪𝑯𝑯𝟒𝟒
𝒅𝒅𝒅𝒅

=
𝑸𝑸

𝜶𝜶𝑯𝑯𝟐𝟐/𝑪𝑪𝑯𝑯𝟒𝟒
𝑷𝑷𝒕𝒕,𝑪𝑪𝑯𝑯𝟒𝟒
𝟏𝟏/𝟒𝟒 − 𝑷𝑷𝒔𝒔,𝑪𝑪𝑯𝑯𝟒𝟒

𝟏𝟏/𝟒𝟒 𝝅𝝅𝑫𝑫𝒕𝒕,

𝒅𝒅𝑭𝑭𝒔𝒔,𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒
𝒅𝒅𝒅𝒅

=
𝑸𝑸

𝜶𝜶𝑯𝑯𝟐𝟐/𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒
𝑷𝑷𝒕𝒕,𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒
𝟏𝟏/𝟒𝟒 − 𝑷𝑷𝒔𝒔,𝑪𝑪𝟐𝟐𝑯𝑯𝟒𝟒

𝟏𝟏/𝟒𝟒 𝝅𝝅𝑫𝑫𝒕𝒕,

𝒅𝒅𝑭𝑭𝒔𝒔,𝑯𝑯𝟐𝟐
𝒅𝒅𝒅𝒅

= 𝑸𝑸 𝑷𝑷𝒕𝒕,𝑯𝑯𝟐𝟐
𝟏𝟏/𝟒𝟒 − 𝑷𝑷𝒔𝒔,𝑯𝑯𝟐𝟐

𝟏𝟏/𝟒𝟒 𝝅𝝅𝑫𝑫𝒕𝒕,

𝒅𝒅𝑭𝑭𝒔𝒔,𝑪𝑪𝟔𝟔𝑯𝑯𝟔𝟔
𝒅𝒅𝒅𝒅

=
𝑸𝑸

𝜶𝜶𝑯𝑯𝟐𝟐/𝑪𝑪𝟔𝟔𝑯𝑯𝟔𝟔
𝑷𝑷𝒕𝒕,𝑪𝑪𝟔𝟔𝑯𝑯𝟔𝟔
𝟏𝟏/𝟒𝟒 − 𝑷𝑷𝒔𝒔,𝑪𝑪𝟔𝟔𝑯𝑯𝟔𝟔

𝟏𝟏/𝟒𝟒 𝝅𝝅𝑫𝑫𝒕𝒕

Some important properties/facts
• The system needs to be numerically integrated (Using JAX’s implementation of Dormand Prince[1])
• Non-convexities are present mainly due to the permeation terms (1/4 power terms)
• Application of the proposed approach differentiates the integrated solution of the system of ordinary differential equations!

[2]

s
a system of



Case Study – Implicit Mapping Results[1]

24[1] Alves V. , Kitchin J. R. and Lima F. V. (2023). AIChE Journal.

Test the proposed approach to find the inverse map for a given optimal operating region and compare it 
against the NLP-based approach (with enhanced features such as warm-start and AD)

Directly obtained inverse map
• Without NLP
• Analytical solution



Case Study – Implicit Mapping Results[1]

25[1] Alves V. , Kitchin J. R. and Lima F. V. (2023). AIChE Journal

Comparison against the NLP-based approach: Accuracy and computational time

Input variable/ Relative error Tube length 
[cm]

Tube diameter 
[cm]

Σ
𝑁𝑁𝑁𝑁𝑃𝑃value 𝑗𝑗

− 𝐴𝐴𝐷𝐷value 𝑗𝑗

𝑁𝑁𝑁𝑁𝑃𝑃value 𝑗𝑗

⋅ 100[%] 0.0186 0.0096

Solution approach Time [min]
Times longer 

than proposed 
approach

Proposed approach 0.93 -

NLP (“cold-start” + finite differences) 17.84 19.18

NLP (“warm-start” + finite differences) 11.56 12.43

NLP (“warm-start” + AD) 1.97 2.11

The proposed approach outperforms 
NLP-based inverse mapping 

solutions even when using state-of-
the-art implementations (e.g., AD for 
Jacobians/Hessians in the NLP and 

“warm-start”)



Case Study – Implicit Mapping Results[1]

26[1] Alves V., Dinh S., Kitchin J. R., Gazzaneo V., Carrasco J. C. and Lima F. V. (2023). Submitted to Journ. of Open Source Soft.

Implicit inverse mapping of disturbances from the output space to the input space

• Input variables (Image)
1. Tube flow rate [cm3/h]
2. Shell flow rate [cm3/h]

1. Define a possibly correlated uncertainty confidence region
2. Map disturbances to input variables using the proposed approach
3. Compare against 10,000 Monte Carlo simulations (NLP)

Implicit map of 
disturbance region

• Outputs variables (Domain)
1. Benzene production [mg/h] 
2. Methane conversion [%]

Problem set up:

[1]



Case Study – Additional (“Free”) Results[1]

• Due to readily available high-order derivatives, phase-portraits and
point-to-point derivative analysis (sensitivity) can be also performed in
the inverse direction, not resorting to NLP-based solutions

27[1] Alves V. , Kitchin J. R. and Lima F. V. (2023). AIChE Journal.



Conclusions and Future Work
• Initial release of the proposed tool

• Computational aspects
• NLP-based approach using different solvers
• Support for automatic differentiation
• Polytopic calculations for seamless OI 

quantification
• Documentation available

• Modules implemented and presented here
• Case studies – examples from this presentation

• Future work
• Implement multilayer framework for simultaneous solution of 

design and control problems[1]

• Add support to Gaussian Process modeling within the Process 
Operability framework[2]

• Implementation of dynamic Process Operability formulations
• Interface with Pyomo[3]

28[1] Gazzaneo V. and Lima F. V. (2019). Ind. Eng. Chem. Res.
[2] Alves V. , Gazzaneo V.  and Lima F. V. (2022). Comput. Chem. Eng. 
[3] Bynum et al. (2021). Pyomo – Optimization Modeling in Python

https://codes-group.github.io/opyrability



Conclusions and Future Work
• Generalize it in terms of mapping direction and dimensionality (also non-square systems)

• Address high-dimensional implicit maps – implemented in Opyrability[1]

• Handle bifurcations in input/output spaces: Particular case in which the Jacobian is non-invertible
• Implement arc-length continuation within the proposed approach – being implemented in Opyrability[1]

• Detect multiple steady-states and input/output multiplicity using the proposed approach – Singularity/elementary catastrophe theory

29[1] Alves V., Dinh S., Kitchin J. R., Gazzaneo V., Carrasco J. C. and Lima F. V. (2024). Journ. of Open Source Soft.
[2] Subramanian S. and Georgakis C. (2001). Chem. Eng. Sci.

Bifurcation in the output space 
of a CSTR

[2] 

𝑔𝑔 =
𝜕𝜕𝑔𝑔
𝜕𝜕𝑥𝑥2

=
𝜕𝜕2𝑔𝑔
𝜕𝜕𝑥𝑥22

= ⋯ =
𝜕𝜕𝑘𝑘𝑔𝑔
𝜕𝜕𝑥𝑥2𝑘𝑘

= 0,
𝜕𝜕𝑘𝑘+1𝑔𝑔
𝜕𝜕𝑥𝑥2𝑘𝑘+1

≠ 0

• Implicit mapping shows potential to solve problems in PSE (but not limited to) with design and
manufacturing nature

• Creative way of solving mapping problems when compared against typical approaches (e.g.,
enumeration and NLP)

• The intent is not to compete with previous approaches but rather to provide an alternative with
complementary features
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