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Deterministic Optimization Model

 Variables

 Constraints

 Objective

 Parameters

 The input parameters 𝜃𝜃 can be uncertain. 

the capacity of a process (𝑥𝑥), whether to install a process or not (𝑦𝑦)

the mass balance, to satisfy the customer demand

minimize total cost

 Model decision-making process as an optimization problem

continuous 𝑥𝑥, discrete 𝑦𝑦
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Product demand, unit cost, thermal and kinetic properties
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Sources of Parameter Uncertainty

 Long-term forecasts, e.g., natural gas price

 Short-term changing conditions, e.g., extreme weather

 Real-time inaccurate measurement, e.g., temperature, pressure



How Do We Model Uncertainty in Optimization Problems?

 Not a uniquely-defined problem

 Multiple ways to hedge against uncertainty
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The jungle of stochastic optimization
(credit: Warren Powell)



Stochastic Programming

 Stochastic programming is a framework for modeling optimization problems 
that involve uncertainty (Birge and Louveaux, 2011).

 Uncertainty can be characterized by probability distributions known a priori
 Continuous distributions

 Each realization of uncertainty parameters is called a scenario
 Optimize the expected value of the objective over all possible scenarios
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 Superstructure

 First stage decisions: which process to install, the capacity of each process

 Second stage decisions: the mass flow rate of each stream

 Constraints: satisfy customer demands, mass balance

A Motivating Example

Process 1

Process 2

Process 3

Chemical 1

Chemical 3 (Product)Chemical 2

Source of Uncertainty
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Two Stage Stochastic Programming

t = 1 t = 2

Decision Resolution of 
uncertainty

Recourse action

  First stage decisions: Here and now

 Second stage decisions: Wait and see, Recourse decisions

Deterministic Equivalent
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Multi-stage Stochastic Program

 Most practical decision problems involve a sequence of decisions that 
react to outcomes that evolve over time.

 In each stage, we have realizations of uncertainties at the current stage.

 Need to decide the time discretization (stage) based on the realization of 
uncertainty.
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A scenario is a path from the root to on leaf

3 stages, 4 scenarios



Multi-stage Stochastic Program
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Optionally expand the 
capacity of the 
processes at stage 2



Scenario Generation

 How do we generate the scenario tree for a stochastic program?

 An area in stochastic programming community.

 Extensive literature. 

 Notable researchers in this area
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Werner Römisch
Department of Mathematics
Humboldt University-Berlin

Stein W. Wallace
Professor of Operational Research

NHH Norwegian School of Economics

Georg Pflug
Professor Statistics and OR

University of Vienna



Main Caveat

 This area is dominated by mathematicians, e.g.,
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 Math is not the focus of this talk

 A tutorial of concepts and computational methods

 This talk is based on the tutorial paper by Kaut and Wallace (2004) and
some recently developments on computational methods for scenario
generation.

Eichhorn and Römisch (Math OR 2007)



Structure of an SP problem
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Note that for us, scenarios include only values of parameters (data), i.e. 
they do not include values of any decision variables!



What to do before scenario generation?

 Prior to scenario generation, we have to:

 Decide the time discretization

• Number of stages

• Lengths of time periods

 Know what information becomes available when, relative to the 
timing of decisions

This issue does not exist in the deterministic case

 Decide the size of the tree, i.e. the number of children for each 
node.
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Sources of data for scenarios
 Historical data

 Reliable past information

 Is history a good description of the future?

 Simulation based on a mathematical/statistical/time series model, e.g.,
ARIMA, HMM

  Might generalize well in the future

 Usually need data to fit these models

 Expert opinion

 Could be useful in some applications, e.g., forecast for oil price

  Subjective, back-testing is not possible.

 In practice, often a combination of more than one of the above

  Estimate the distribution from historical data, then use a mathematical 
model and/or an expert opinion to adjust the distribution to the current 
situation.
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Main Criteria

 A good scenario tree should capture

 Distributions of the random variables at each period

• marginal distributions of all variables, in the very least their 
means and variances

• dependence between them, typically measured by correlations

 Inter-temporal dependencies

• changes of the distributions, based on values of previous stages

• includes things like auto-correlations, mean reversion, etc.

•  can be modelled by time-series models
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Quality of scenario trees

In assessing quality of the scenario tree generation method, we consider 
two things

 Stability 

 If we generate several scenario trees, the solutions should not vary 
too much.

 Error

 We use an approximation of the true distribution, so we are likely to 
find a suboptimal solution.

 Not straightforward how to measure the error.
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Some Notation
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 The original problem is,

where 𝑥𝑥 are the first stage decision variables, 𝜉𝜉 denotes the “true” 
distribution.  Note that we do not express the variables after stage 1 
explicitly.

 The scenario-based problem is,

where 𝜂𝜂 denotes the scenario tree approximation of the “true” 
distribution.

 The scenario tree generation method is usually stochastic, e.g, 
sampling-based method. In stability tests, we generate several scenario 
trees 𝜂𝜂𝑘𝑘, 𝑘𝑘 = 1, … ,𝑛𝑛, leading to solutions



Discretization Error

 Pflug (2001) defines an approximation error caused by 𝜂𝜂𝑘𝑘  (also called an 
optimality gap) as:
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 To evaluate 𝑒𝑒𝑓𝑓(𝜉𝜉, 𝜂𝜂𝑘𝑘) we need to 

 Evaluate the “true” objective function 𝐹𝐹(𝑥𝑥; 𝜉𝜉).

• Can sometimes be done using a “simulator”

 Solve the original problem, i.e., min
𝑥𝑥
𝐹𝐹(𝑥𝑥; 𝜉𝜉) 

• Impossible. Otherwise, we would not use the scenario tree 
approximation



Tests Using a Simulator

 Assume that we have a “simulator” for evaluating 𝐹𝐹(𝑥𝑥; 𝜉𝜉), i.e. the true 
performance of a solution 𝑥𝑥

 This allows us to:

  Compare two solutions 𝑥𝑥1∗, 𝑥𝑥2∗

 Compare two different scenario-generation methods.

  Test an out-of-sample stability of a given method:

1.  Generate a set of trees 𝜂𝜂𝑘𝑘 ,𝑘𝑘 = 1, … ,𝑛𝑛

2.  Solve problems using the trees → solutions 𝑥𝑥𝑘𝑘∗ .

3. Test whether 𝐹𝐹 𝑥𝑥𝑘𝑘∗ ; 𝜉𝜉 ≈ 𝐹𝐹(𝑥𝑥𝑙𝑙∗; 𝜉𝜉)

  The test is equivalent to 𝑒𝑒𝑓𝑓(𝜉𝜉, 𝜂𝜂𝑘𝑘) ≈ 𝑒𝑒𝑓𝑓(𝜉𝜉, 𝜂𝜂𝑙𝑙)

  Without stability, we have a problem!

 𝑒𝑒𝑓𝑓(𝜉𝜉; 𝜂𝜂𝑘𝑘) ≈ 0, implies 𝑒𝑒𝑓𝑓(𝜉𝜉, 𝜂𝜂𝑘𝑘) ≈ 𝑒𝑒𝑓𝑓(𝜉𝜉, 𝜂𝜂𝑙𝑙) and stability
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Out of Sample Tests without a Simulator

 Instead of using a simulator, we can “cross test”, i.e. test
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𝐹𝐹(𝑥𝑥𝑘𝑘∗ ; 𝜂𝜂𝑙𝑙)  for 𝑙𝑙 ≠ 𝑘𝑘

for all 𝑘𝑘 = 1, … ,𝑛𝑛, 𝑙𝑙 = 1, … ,𝑛𝑛

  It is still an out-of-sample test, as we test the solutions on different 
trees than were used to find them.

 If we have to choose one of the solutions 𝑥𝑥𝑘𝑘∗ , we choose the most stable 
one, i.e., 𝐹𝐹(𝑥𝑥𝑘𝑘∗ ;𝜂𝜂𝑙𝑙)  for 𝑙𝑙 ≠ 𝑘𝑘 for all 𝑘𝑘 = 1, … ,𝑛𝑛 has the least variance



In-sample Stability

 Instead of the true performance, we look at the optimal objective values 
reported by the problems themselves. Check if,
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𝐹𝐹(𝑥𝑥𝑘𝑘∗ ; 𝜂𝜂𝑘𝑘) ≈ 𝐹𝐹(𝑥𝑥𝑙𝑙∗; 𝜂𝜂𝑙𝑙)

or equivalently,

min
𝑥𝑥
𝐹𝐹(𝑥𝑥; 𝜂𝜂𝑘𝑘) ≈ min

𝑥𝑥
𝐹𝐹(𝑥𝑥; 𝜂𝜂𝑙𝑙)

 No direct connection to out-of-sample stability

 Without this, we cannot trust the reported performance of the scenario-
based solutions.



What If We Do Not Have Stability?

 What does it mean:

  No stability → decision depends on the choice of the tree.

 What to do:

  Change/improve the scenario generation method.

 Increase the number of scenarios.

 Generate several trees, get the solutions and then “somehow” 
choose the best solution.
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A proper mathematical treatment of stability can be found in Dupačová 
and Römisch (1998); Fiedler and Römisch (2005); Heitsch et al. (2006).



Upper Bound for the Error

 How to obtain an upper bound for the error?

  Define
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 Recall an approximation error caused by 𝜂𝜂𝑘𝑘

We have

To overestimate the error, we need an under estimator for 𝑧𝑧∗



Upper Bound for the Error
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Error:

Mak et al. (1999) prove that if 𝜂𝜂𝑘𝑘  are generated using sample average 
approximation, i.e., generate i.i.d. samples from the ”true” distribution.
We have,

If the samples in 𝜂𝜂𝑘𝑘  are unbiased

under estimator 



Upper Bound for the Error
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By combining under estimator for 𝑧𝑧∗ and an over estimator for 𝐹𝐹 𝑥𝑥𝑘𝑘∗ ; 𝜉𝜉 . 

 This is a stochastic upper bound, it can even be negative.

 It is possible to compute a confidence interval for the upper 
bound, based on t-distribution.

 See Mak et al. (1999) for details, including variance-reduction 
techniques.



Scenario Generation Methods-Standard Sampling

 Univariate random variable

  This is a standard random number generation.

  Methods exist for all possible distributions.

 Independent multivariate random vector

 Generate one margin at a time, combine all against all

• guaranteed independence

• grows exponentially with the dimension

• trees need often some “pruning” to be usable

 General multivariate case

  Special methods for some distributions.

•  e.g., normal distribution via Cholesky decomposition

 Use principal components to get “independent” (uncorrelated) 
variables.
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Multiple Periods Sampling

 Generate one single-period subtree at a time. Start in the root, move to 
its children, and so on.

 Inter-temporal independence

  Easy, as the distributions do not change.

 Distribution depends on the history.

  Distribution of children of a node depends on the values on the 
path from the root to that node.

 The dependence is modeled using stochastic processes like ARMA
(autoregressive moving average)

 New value 𝑋𝑋𝑡𝑡 is a function of values of previous time periods and 
random disturbance 𝜖𝜖𝑡𝑡~𝑁𝑁(0,𝜎𝜎2)
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ARMA(p,q) process:𝑋𝑋𝑡𝑡 = ∑𝑖𝑖=1
𝑝𝑝 𝑝𝑝𝑖𝑖𝑋𝑋𝑡𝑡−𝑖𝑖 + 𝜖𝜖𝑡𝑡 + ∑𝑖𝑖=1

𝑞𝑞 𝜃𝜃𝑖𝑖𝜖𝜖𝑡𝑡−𝑖𝑖

𝑋𝑋𝑡𝑡 = 𝑓𝑓(𝑋𝑋𝑡𝑡−1,𝑋𝑋𝑡𝑡−2, … ; 𝜖𝜖𝑡𝑡−1, 𝜖𝜖𝑡𝑡−2, … ; 𝜖𝜖𝑡𝑡)



Sampling Methods

 Pros 

 Easy to implement.

 Distribution converges to the true one

 SAA provides a lower bound for 𝑧𝑧∗

 Cons 

  Bad performance/stability for small trees.

 Have to know the distribution to sample from.
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Scenario Reduction

 The idea is to reduce size of a given scenario tree 𝜉𝜉 into a smaller tree 𝜂𝜂, 
with as little impact on the solution as possible.

  It is based on the theory of stability of stochastic programs w.r.t.
changes in the probability measures; see Römisch (2003)
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Scenario Reduction

 Dupačová et al. (2003); Heitsch and Römisch (2003, 2007)

 The goal is to reduce a tree from N to k scenarios.

 It turns out the problem is NP-hard. The authors propose heuristics:

 backward reduction

 find the scenario whose removal will cause the smallest error

 remove the scenario and redistribute its probability

 repeat until we have only k scenarios left

 forward selection

 start with an empty tree

 find the scenario whose addition will cause the biggest 
improvement

 add the scenario and redistribute its probability

 repeat until we have k scenarios
30



Property Matching Methods

 These methods construct the scenario trees in such a way that a given 
set of properties is matched.

  The properties are, for example, moments of the marginal distributions 
and covariances/correlations.

  Typically, the properties do not specify the distributions fully; the rest is 
left to the method.

 Different methods produce very different results.

  The issue is very significant for bigger trees, with many more 
degrees of freedom.
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Degrees of Freedom in the Tree

• Simple two-stage scenario tree with structure 1-4
Stage 1

Stage 2

• Decision variables in an optimization formulation
 Probabilities of the outcomes (pi )
 Values of the outcomes (xi )

• Moment Matching Method
 Determine p and x to match (marginal) moments calculated from tree  

and those estimated from the data
 Over- and under-specification issues

 Under-specification is common and increases with number of outcomes  
for fixed number of moments

(Høyland & Wallace, 2001)

Slides credit to:
Bruno Calfa and Ignacio Grossmann
Calfa et al. (2014)32



Mitigating Under-Specification

• Each outcome has two sets of variables: and
• Each moment specification has one piece of information
• Consequences:

 Multiple combinations of x and p satisfy moments
 Probabilities may not capture the shape of the underlying distribution

• Additional information: marginal (Empirical) Cumulative Distribution

Cumulative Probability
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𝐺𝐺𝐺𝐺𝐺𝐺 𝑥𝑥 = 𝛽𝛽0 +
𝛽𝛽1 − 𝛽𝛽0

1 + 𝛽𝛽2𝑒𝑒−𝛽𝛽3𝑥𝑥 1/𝛽𝛽4



Min weighted error  
between tree and data

Probabilities  
add up to 1

Moments calculated  
from the tree

Covariances calculated  
from the tree

Bounds on variables

L2 Moment Matching Problem (L2 MMP)

Nonlinear, nonconvex optimization problem.
L1 formulation can be reformulated as an LP for fixed node values (Ji et al., 2005)

34



Min weighted error  
between tree and data

Probabilities  
add up to 1

Moments calculated  
from the tree

Covariances calculated  
from the tree

Bounds on variables

ECDF information

L2 Distribution Matching Problem (L2 DMP)

Nonlinear, nonconvex optimization problem.
L1 formulation can be reformulated as an LP for fixed node values (Ji et al., 2005)
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Scenario Tree Generation and Forecasting  
Multistage Problems

• Final result

Past Present Future

 NLP Approach: calculate both probabilities and outcome values.
 LP Approach: fix outcome values, calculate probabilities.
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Motivating Example: Process Network

• Network of chemical plants

• 1 raw material (A), 1 intermediate product (B), two finished  
products (C and D)

• Only D can be stored and C can be purchased from elsewhere

Case 1: uncertain yield

Case 2: uncertain demands
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Case 1: Uncertain Yield Process 1

• Historical data for production yield of facility P1

• Skewed to the right
• Tail effects (extreme values) are not negligible
• Approaches: Original MMP and L2 DMP (2 moments +ECDF)
• TSSP, where first stage is t = 1 and second stage is t = 2, …, 4
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Two-Stage Scenario Trees
• Heuristic Approach • L2 DMPApproach

0.3 0.4 0.5 0.6 0.7

0.1

0.2 0.4
0.1

0.2

0.14 0.66 0.76 0.83 0.90

0.02

0.21 0.28
0.23

0.27

Approach Expected Profit [$]
Heuristic 62.77
L2 DMP 72.45
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Case 2: Uncertain Product
Demands

• Statistical analyses performed in R (forecast package)
• Both stochastic processes are modeled as ARIMA(1,0,0) with non-

zero mean
• Approaches: Heuristic, L2 DMP (2 moments + normal CDF)
• MSSP, where stage: time point = {1:1, 2:2, 3:3, 3:4}
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• Heuristic Approach • L2 DMPApproach

Multi-Stage Scenario Trees

NLPs: 12.3 sec (IPOPT)Heuristic L2 DMP

79.95 82.39

Expected profits [$]
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Property Matching Method

 Pros 

 Do not have to know/assume a distribution family, only to estimate 
values of the required properties.

 Can combine historical data with today’s predictions.

 The marginal distributions can have very different shapes, so the 
vector does not follow any standard distribution.

 Cons 

 No convergence to the true distribution.

 If we know the distribution, we cannot utilize this information, i.e. 
we throw it away. Can be hard to find which properties to use.
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Conclusion

 Scenario generation is an important part of the modelling/solving 
process for stochastic programming models.

 A bad scenario-generation method can spoil the result of the whole 
optimization.

  There is an increasing choice of methods, but one has to test which one 
works best for a given problem.
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