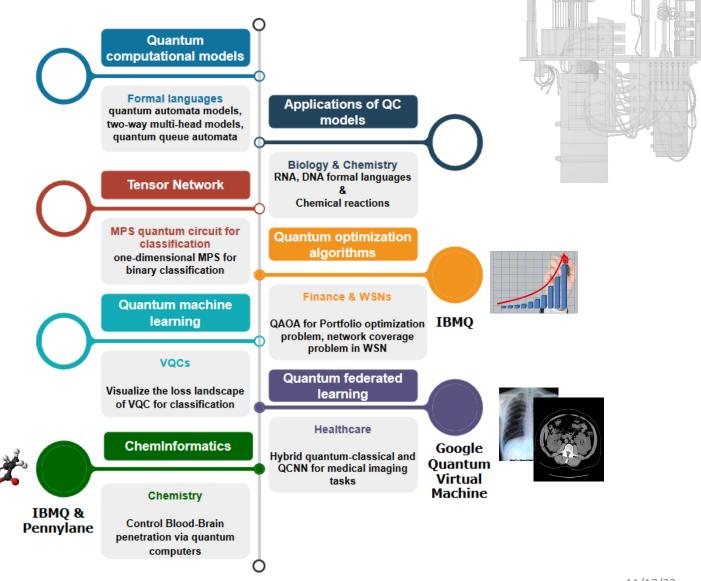


"Federate Quantum Machine Learning in Health

Keeping data decentralized

Amandeep Singh Bhatia Postdoctoral Research Associate, Davidson School of Chemical Engineering, Purdue University, IN, 47907

RESEARCH INTERESTS



ROADMAP OF THE TALK

Federated Quantum Machine Learning

Federated Learning

- The reliance on data
- Federated efforts
- Deployment
- Applications
- Challenges

Quantum Machine Learning

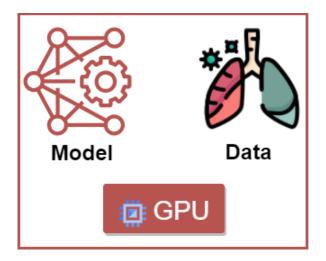
- QML models in
 - ΑI
- CNNs
- QNNs
- Applications
- Challenges

Quantum Federated Learning

- QC + FL
- Data distribution
- Deployment in Healthcare
- Results
- Challenges

DATARIVEN MEDICINE

Data Governance and Privacy

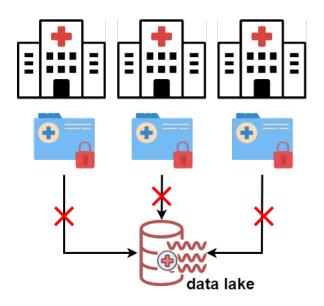


- Training of robust and accurate deep learning models requires large and diverse datasets.
- Research is driven by data lakes (centralized repository).
- Real-world data are not fully exploited by machine learning.

Demographic Bias / Healthcare in remote areas / Hindered Research?

THE RELIANCE ON DATA

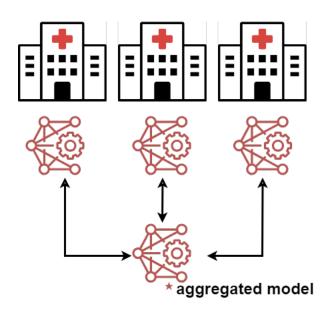
ROBUST MODELS, LARGE SCALE TRAINING



- Healthcare data is highly sensitive, subject to regulations, and cannot easily be shared.
- Biases where demographics or technical imbalances impact predictions.
- Adequate datasets are difficult to obtain:
 - Regulatory, ethical legal challenges
 - Technical challenges

THE PROMISE OF FEDERATED EFFO

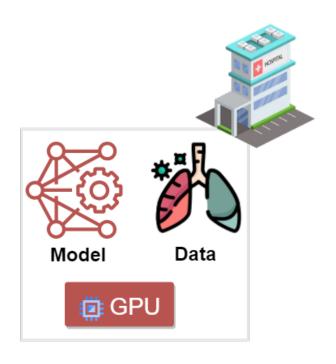
ROBUST MODELS, LARGE SCALE TRAINING



- Share model updates, not data
- Collaborative learning without centralizing data
- Address privacy and data governance challenges
- Al training occurs locally at each participant/client
- Participant controls data access and the ability to revoke it.

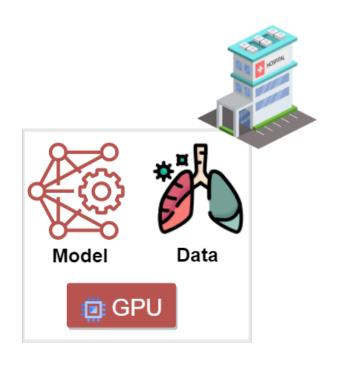
DATARIVEN MEDICINE REQUIRES FEDERA

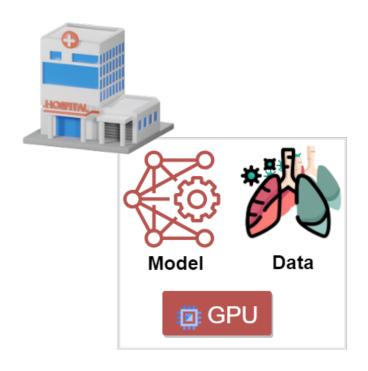
Federated Learning Solution



DATERIVEN MEDICINE REQUIRES FEDERA

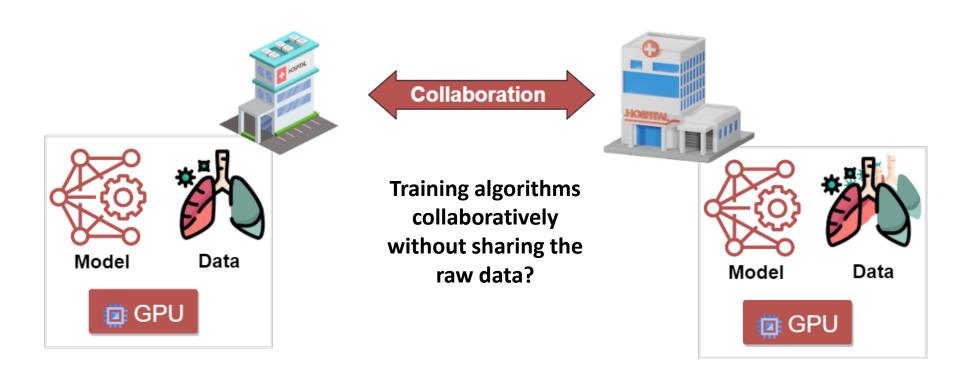
Federated Learning Solution





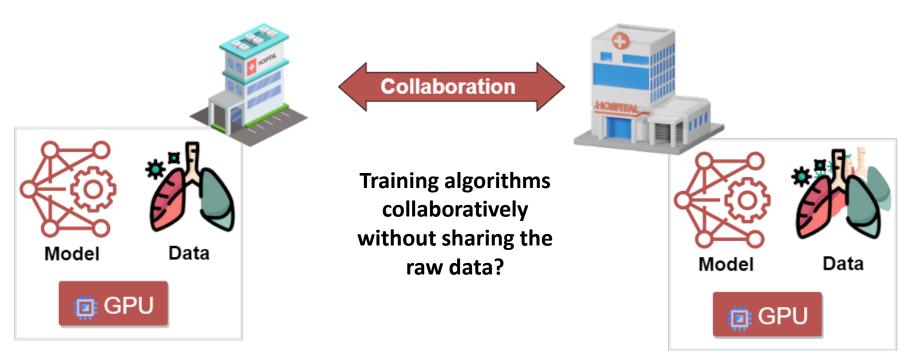
DATARIVEN MEDICINE REQUIRES FEDERA

Federated Learning Solution



DATARIVEN MEDICINE REQUIRES FEDERA

Federated Learning Solution

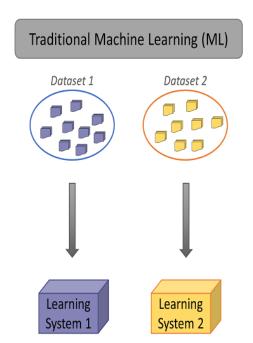


Possible Solution:

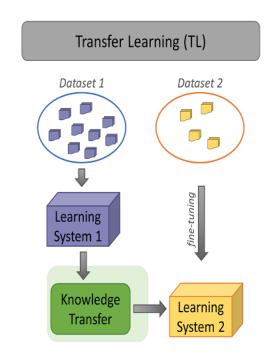
Federated Learning – allow algorithms to learn from non co-located data

LEARNING PARADIGMS

A NEW WAY OF LEARNING

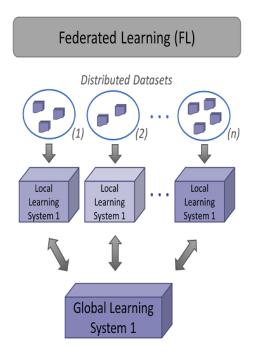


Dataset and Training in House Local Training, Local Model

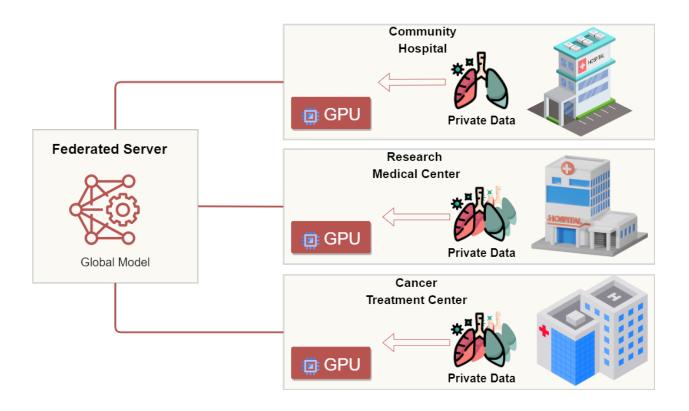


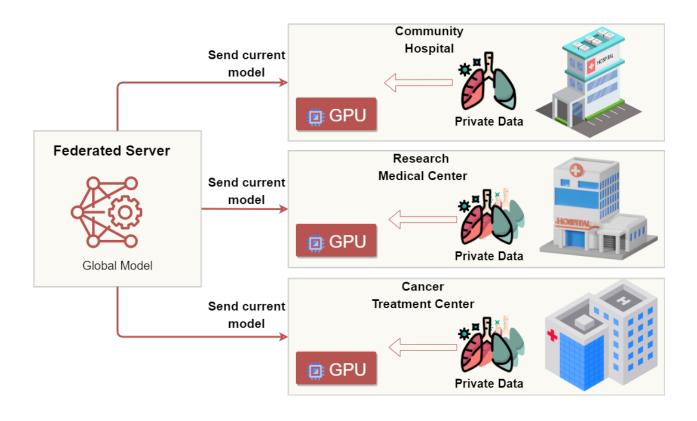
Finetune a pretrained Model

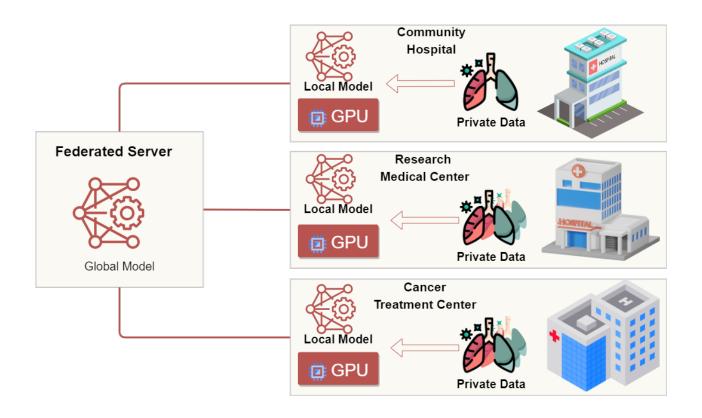
Local Training, Adept External Model

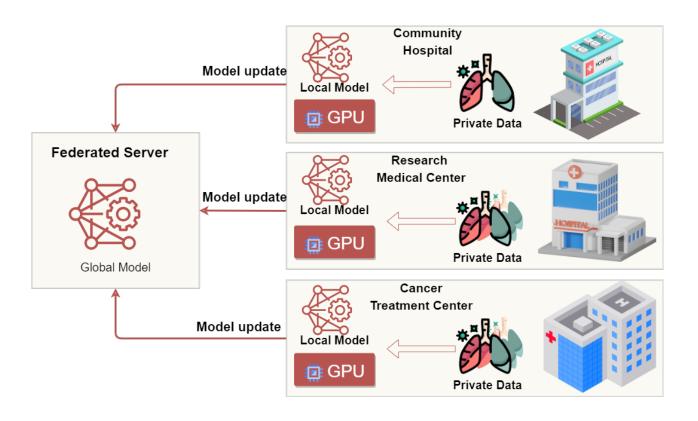


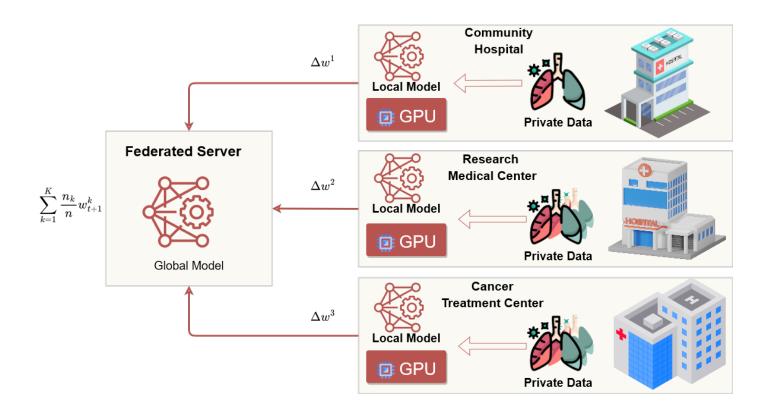
Collaborative Learning without sharing dataset Local Training, Collaborate on Global Model





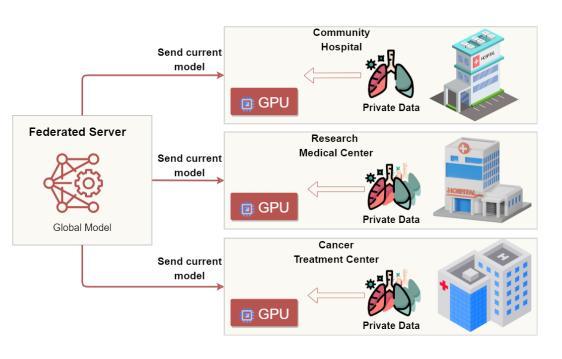






FL APPLICATIONS & CHALLENGES

Changing the way Al algorithms are trained



Applications:

- Learning activities of mobile phone users (in Google), voice assistant Siri (in Apple)
- Adapting to pedestrian behavior in autonomous vehicles (in Tesla)
- Predicting health events like heart attack risk from wearable devices (in Apple)
- Predicting vehicles behavior due to varying weather, changing road conditions (in BMW)

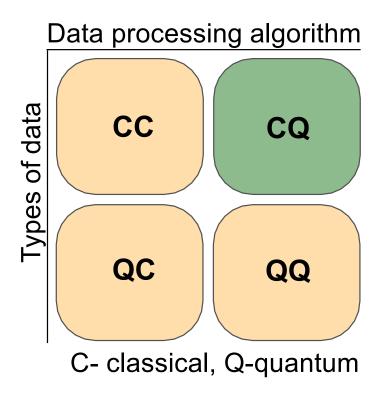
Expensive Communication

Systems Heterogeneity

Statistical Heterogeneity

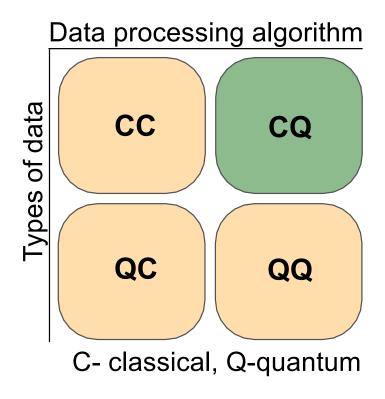
Privacy Concerns

QUANTUM MACHINE LEARNING



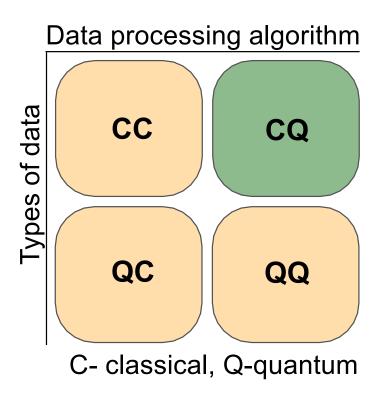
$$y = g(x)$$

QUANTUM MACHINE LEARNING



$$y = g(x)$$
$$y = f(x, \theta)$$

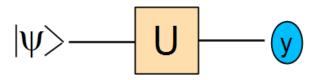
QUANTUM MACHINE LEARNING



$$|f(x, \boldsymbol{\theta})\rangle$$

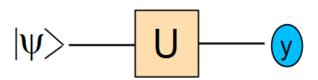
QUANTUM MODELS

- Deterministic quantum models
 - Deutsch-Jozsa algorithm

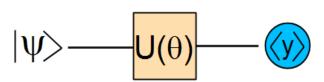


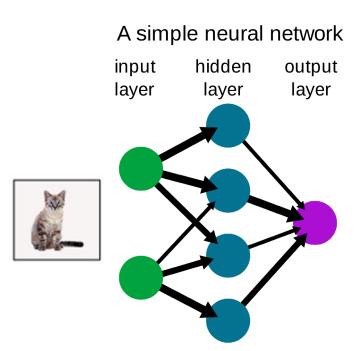
QUANTUM MODELS

- Deterministic quantum models
 - Deutsch-Jozsa algorithm



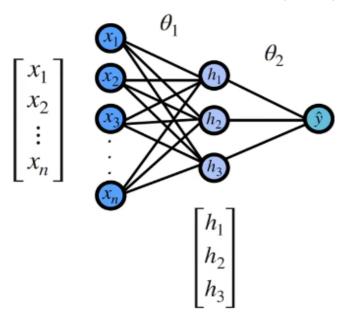
- Variational quantum models
 - Variational quantum eigensolver (VQE)
 - Variational quantum classifier (VQC)
 - Quantum support vector machine (QSVM)
 - Quantum neural networks (QNN)
 - Quantum convolutional neural networks (QCNN)
 - Quantum generative models (QGAN)





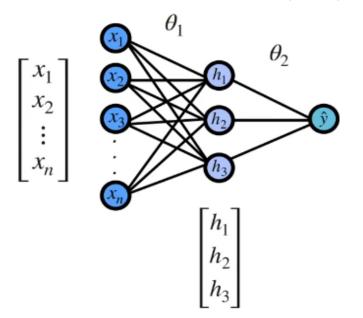
Based on parameterized quantum circuits

Classical Neural Network (CNN)

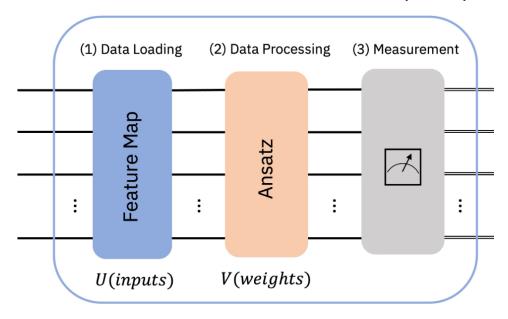


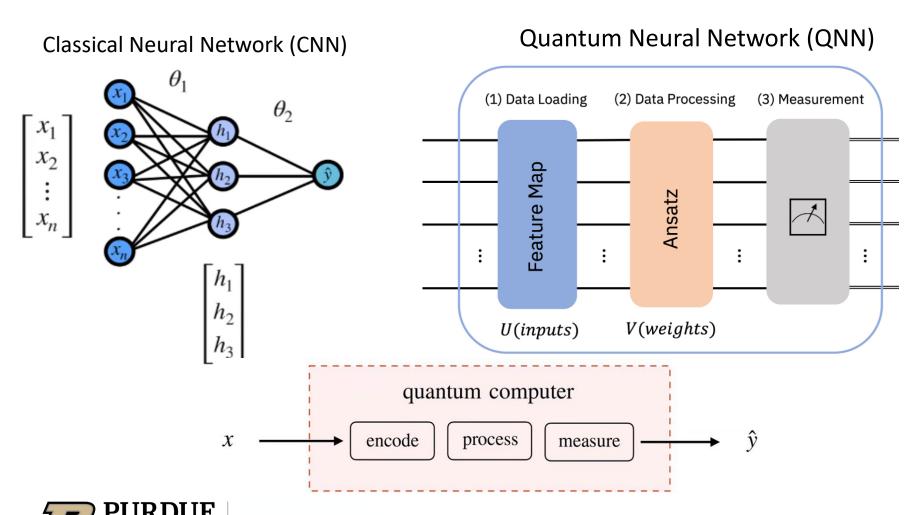
Based on parameterized quantum circuits

Classical Neural Network (CNN)



Quantum Neural Network (QNN)





Based on parameterized quantum circuits

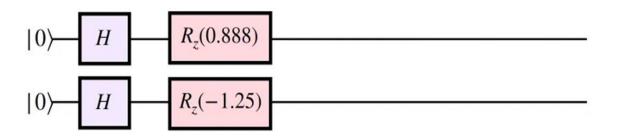
Feature Map

$$x^1 = \begin{bmatrix} 0.888 \\ -1.25 \end{bmatrix}$$

Based on parameterized quantum circuits

Feature Map

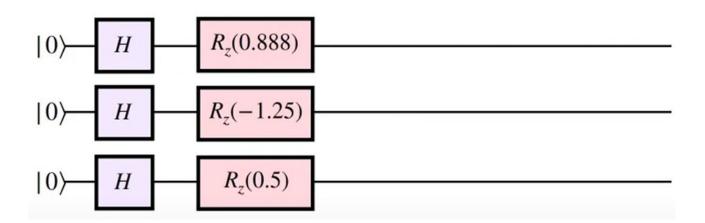
$$x^1 = \begin{bmatrix} 0.888 \\ -1.25 \end{bmatrix}$$



Based on parameterized quantum circuits

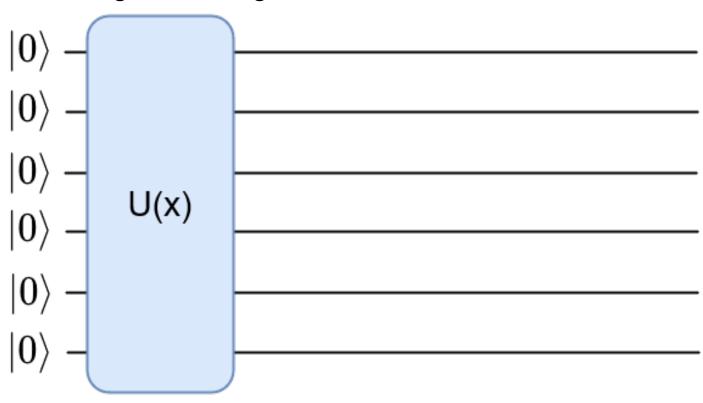
Feature Map

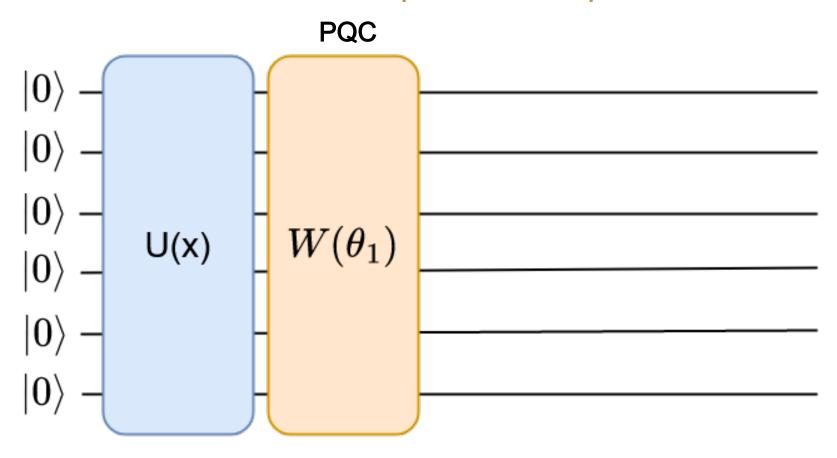
$$x^1 = \begin{bmatrix} 0.888 \\ -1.25 \\ 0.5 \end{bmatrix}$$

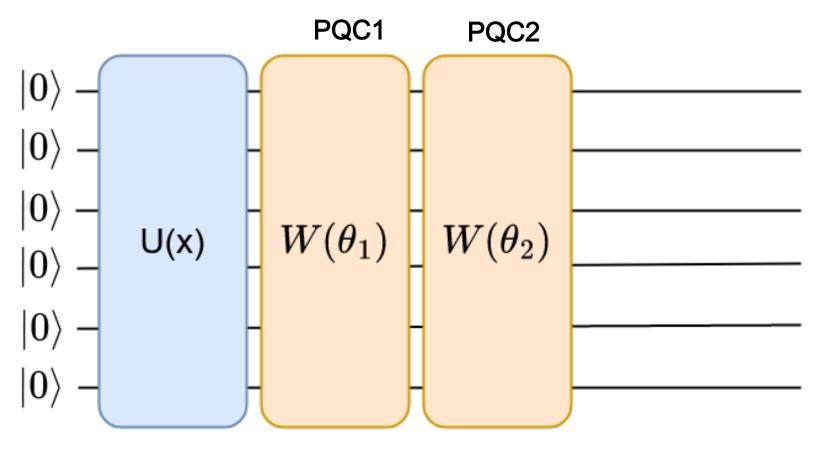


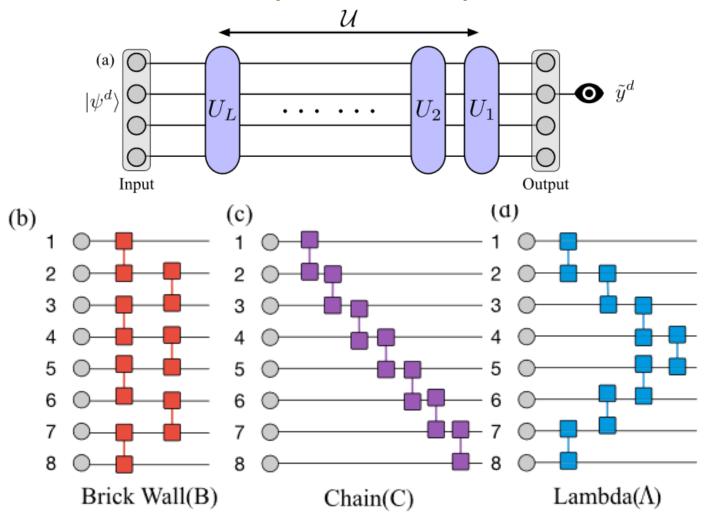
Based on parameterized quantum circuits

Angel Encoding



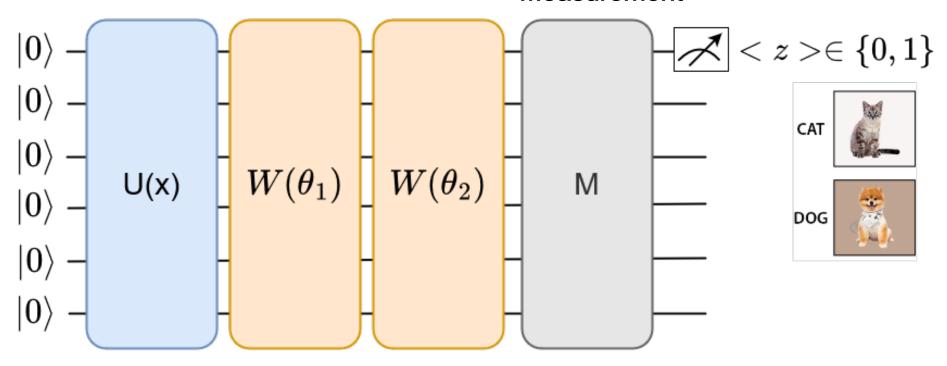






Based on parameterized quantum circuits

Measurement

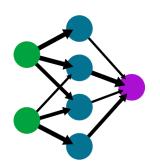


CHALLENGES

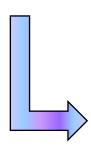
Quantum machine learning

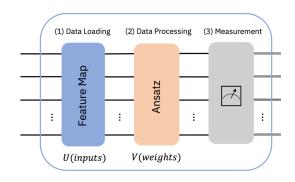
There are still a lot of open problems:

- Scalability
- Ansatz choice
- Training
- Scalable error correction
- Overcome barren plateaus problem



- What architecture is best suited for a problem?
- What affects trainability?
- Generalization power?



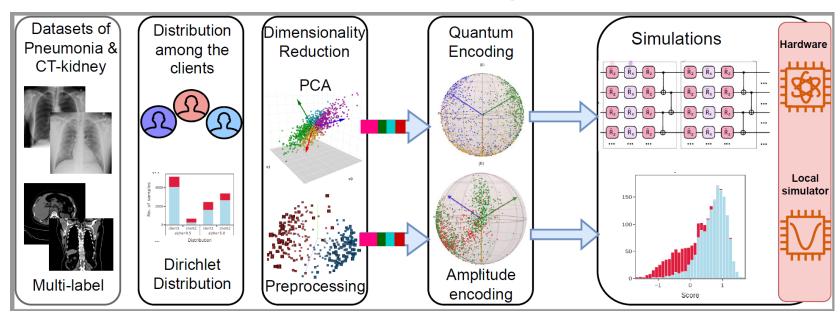


"The question on whether quantum computers can really play a role in identifying practical ML application is still wide open, and it is unlikely to be decided by theoretical proofs or small-scale experiments".

SOFTWARE FRAMEWORKS

Quantum machine learning

Quantum Federated Algorithm Workflow



Quantum Science and Technology

PAPER

Federated quanvolutional neural network: a new paradigm for collaborative quantum learning

Amandeep Singh Bhatia 10, Sabre Kais 1,20 and Muhammad Ashraful Alam 1,*0

- School of Electrical and Computer Engineering, Purdue university, West Lafayette, IN, United States of America
- Department of Chemistry, Purdue University, West Lafayette, IN, United States of America
- * Author to whom any correspondence should be addressed.

E-mail: alam@purdue.edu

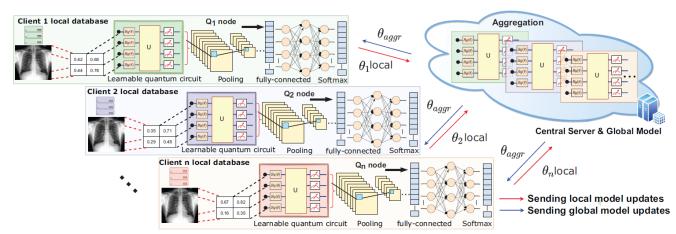
Combine Quantum Computing & Federated Learning

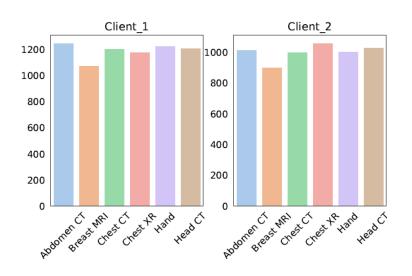
Algorithm 1 Quantum Federated Learning Averaging Algorithm

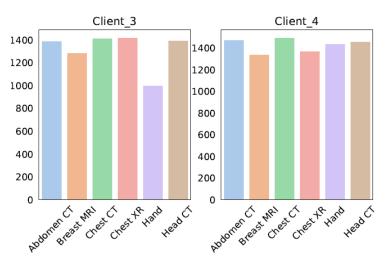
1: Input: D devices such that $d=1, 2,..., D, n_d$ is the number of samples available with client, B represents batch-size, E is the number of local epochs, R denotes communication rounds, η_l, η_s are the learning rates of local client and global server, respectively.

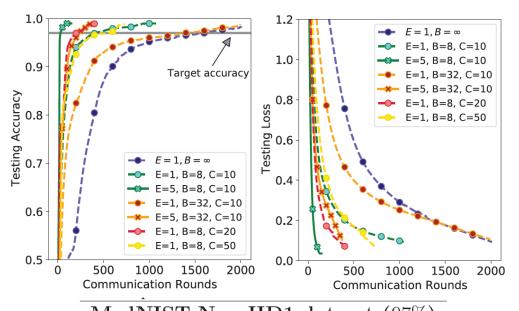
Objective: Develop a quantum federated learning (QFL) framework to tackle the optimization, security, and privacy challenges in the healthcare and clinical industries for medical imaging tasks.

```
2: LocalDevice(d, \theta):
 3: for i=1 to E do
           for b \in B do
                \theta^d \leftarrow \theta^d - \eta_l \nabla \mathcal{F}(\theta^d, b)
           end for
 7: end for
 8: return \theta^d to Server
 9: GlobalServer:
10: Initialize \theta_{1s}
11: for r=0 to R-1 do
           Send \theta_r global server parameters
      device.
           for each d \in D do
13:
                \theta^{d}_{r+1^{l}} \leftarrow \text{LocalDevice}(d, \theta^{d}_{r^{s}}),
14:
15:
           \theta_{r+1^s} \leftarrow \theta_{r^l}^d - \eta_s \sum_{d=1}^D \frac{1}{n_d} \theta_{r+1^l}^d
17: end for
```









MedNIST Non-IID1 dataset (97%)				
Fed	С	Е	В	QCNN
FedSGD		1	∞	1950
FedAVG	10	1	8	$626 (3.11 \times)$
FedAVG	10	5	8	$49 (39.7 \times)$
FedAVG	10	1	32	$1750 \ (1.11 \times)$
FedAVG	10	5	32	$289 (6.74 \times)$
FedAVG	20	1	8	$286 (6.81 \times)$
FedAVG	50	1	8	$646 (3.01 \times)$

500

 \mathbf{C}

10

20

50

20

10

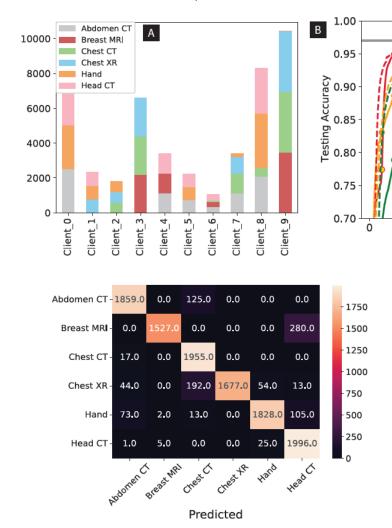
10

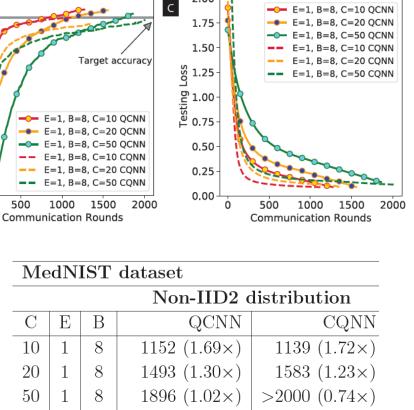
1000

Ε

32

32





 $927 (2.10 \times)$

959 $(2.03\times)$

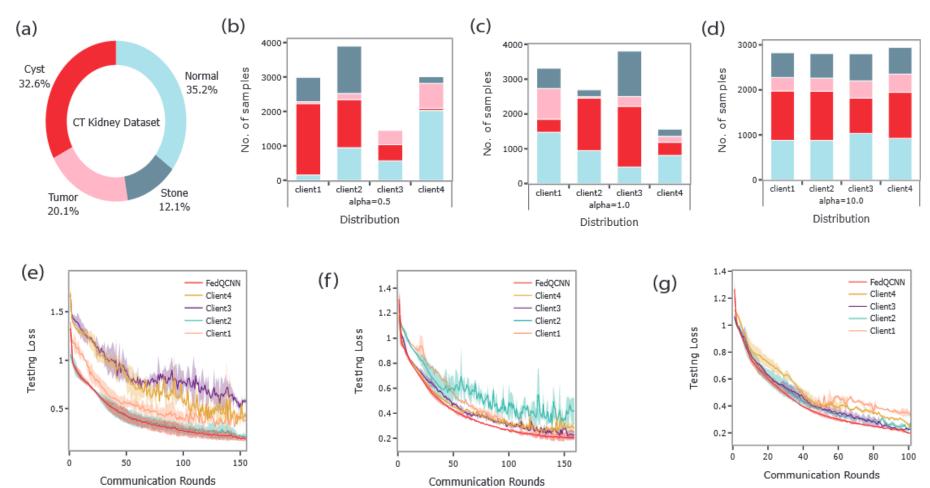
 $>2000 (0.47\times)$

 $397 (4.91 \times)$

 $624 (3.12 \times)$

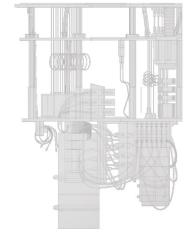
 $>2000 (0.64\times)$

Quantum Convolutional Neural Networks (QCNNs) in Federated setti



Conclusion

- Demonstrated the resilience and consistency of the federated hybrid models when confronted with inadequate and unevenly distributed training data.
- Federated quantum model takes fewer rounds for training on increasing the client fraction.
- The tuning of a batch-size (B) parameter is essential to maintain a balance between computational efficiency and convergence rate.
- On adding up the computation on the client side by either increasing local epochs (E), decreasing batch size (B), or both to reduce the communication rounds in a quantum federated learning framework.



Thank you! Questions?

Amandeep S. Bhatia: bhatia87@purdue.edu

https://drasbhatia.netlify.app/

Elmore Family School of Electrical and Commuter Engineering

