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ROADMAP OF THE TALK

Federated Quantum Machine Learning

Federated Learning Quantum Machine Quantum Federated
Learning Learning
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DATARIVEN MEDICINE

Data Governance and Privacy

= Training of robust and accurate deep learning models
requires large and diverse datasets.

= Research is driven by data lakes (centralized
repository).

= Real-world data are not fully exploited by machine
learning.

» Demographic Bias / Healthcare in remote areas /

Hindered Research?
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THE RELIANCE ON DATA
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Healthcare data is highly sensitive, subject to
regulations, and cannot easily be shared.

Biases where demographics or technical imbalances
impact predictions.
Adequate datasets are difficult to obtain:

= Regulatory, ethical legal challenges
=  Technical challenges



THE PROMISE OF FEDERATED EFFO

o o o = Share model updates, not data

| | |
% 8 @
‘[_’@ ‘_] Participant controls data access and the ability to

*aggregated model revoke it.

= Collaborative learning without centralizing data

Address privacy and data governance challenges

Al training occurs locally at each participant/client
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DATRARIVEN MEDICINE REQUIRES FEDERA

Federated Learning Solution

Model Data

= GPU
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DATFRRIVEN MEDICINE REQUIRES FEDERA

Federated Learning Solution
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DATFRRIVEN MEDICINE REQUIRES FEDERA

Federated Learning Solution

Collaboration

-]
@ X% Training algorithms
collaboratively

Model Dat without sharing the
ode atd raw data? Model Data

= GPU = GPU
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DATFRRIVEN MEDICINE REQUIRES FEDERA

Federated Learning Solution

Collaboration

Training algorithms 23
collaboratively @
without sharing the

raw data? Model
= GPU 5 GPU

Possible Solution:

Model Data

Federated Learning - allow algorithms to learn from non co-located data
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LEARNING PARADIGMS

A NEW WAY OF LEARNING

Distributed Datasets

Dataset 1 Dataset 2 Dataset 1 Dataset 2

Learning m=m) | Learning
System 2 System 2

Dataset and Training in House Finetune a pretrained Model
Local Training, Local Model Local Training, Adept External Model
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Collaborative Learning without sharing dataset
Local Training, Collaborate on Global Model

07/14/2023 &>

SURDUE



WHAT IS FEDERATED LEARNING

Changing the way Al algorithms are trained
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WHAT IS FEDERATED LEARNING

Changing the way Al algorithms are trained
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Send current Hospital
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WHAT IS FEDERATED LEARNING

Changing the way Al algorithms are trained

Community

Hospltal
W
Local odel < LD f’/
( E[ GPU Private Data ‘.v
Federated Server
Q

Research
g Medical Center
c{{% Local Model < l'.'. X
= GPU

Private Data e
Global Model

Cancer
[ {{cg} Treatment Center

Local Model

= GPU “

Private Data

E PURDUE 117203 ab

UNIVERSITY.



WHAT IS FEDERATED LEARNING

Changing the way Al algorithms are trained
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WHAT IS FEDERATED LEARNING

Changing the way Al algorithms are trained
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FL APPLICATIONS & CHALLENGES

Changing the way Al algorithms are trained

Send current
model
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Research
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Private Data

Cancer
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Private Data

Applications:

Learning activities of mobile phone
users (in Google), voice assistant
Siri (in Apple)

Adapting to pedestrian behavior in
autonomous vehicles (in Tesla)
Predicting health events like heart
attack risk from wearable devices
(in Apple)

Predicting vehicles behavior due to
varying weather, changing road
conditions (in BMW)

D GH LR

Expensive Communication Systems Heterogeneity  Statistical Heterogeneity Privacy Concerns
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QUANTUM MACHINE LEARNING

Data processing algorithm

caQ y=g(x)

CC

Types of data

QC

C- classical, Q-quantum



QUANTUM MACHINE LEARNING

Data processing algorithm
cQ y=g (x)
y=f(x, 0)

CC

Types of data

QC

C- classical, Q-quantum



QUANTUM MACHINE LEARNING

Data processing algorithm

CC cQ

[f (x, 6))

Types of data

QC

C- classical, Q-quantum



QUANTUM MODELS

Deterministic quantum models

> —

- Deutsch-Jozsa algorithm
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QUANTUM MODELS

Deterministic quantum models

v>—~ U

- Deutsch-Jozsa algorithm

Variational quantum models
- Variational quantum eigensolver (VQE)

- Variational quantum classifier (VQC) |\|j>
- Quantum support vector machine (QSVM)

- Quantum neural networks (QNN)
- Quantum convolutional neural networks (QCNN)
- Quantum generative models (QGAN)
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QUANTUM NEURAL NETWORKS

Based on parameterized quantum circuits

A simple neural network

input hidden output
layer layer layer
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QUANTUM NEURAL NETWORKS

Classical Neural Network (CNN)
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QUANTUM NEURAL NETWORKS

Classical Neural Network (CNN) Quantum Neural Network (QNN)
(1) Data Loading (2) Data Processing  (3) Measurement
EN .
XE o
. 1 © I I S
2 = N
[«)] [qs]
Xn _— S  — o  — /7& —_——
- © <
(4]
L

U(inputs) V(weights)
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QUANTUM NEURAL NETWORKS

Classical Neural Network (CNN) Quantum Neural Network (QNN)
(1) Data Loading (2) Data Processing  (3) Measurement
[ X; ] 1
XE a
. 1 © I I S
2 = N
[«)] [qs]
"":n N E— ‘5 — UC'J I /7k N
- © <
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L

U(inputs) V(weights)

quantum computer

X ——:—»[ encode ] [ process ] [ measure ]—§—> y
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Feature Map
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QUANTUM NEURAL NETWORKS

Feature Map
1 |0888
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QUANTUM NEURAL NETWORKS

Feature Map
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QUANTUM NEURAL NETWORKS

Based on parameterized quantum circuits
Angel Encoding
4 N

U(x)
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QUANTUM NEURAL NETWORKS

Based on parameterized quantum circuits
PQC
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U(x)

QUANTUM NEURAL NETWORKS

PQC1

PQC2




QUANTUM NEURAL NETWORKS

Based on parameterized quantum circuits
U
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QUANTUM NEURAL NETWORKS
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CHALLENGES

Quantum machine learning

There are still a lot of open problems: [ What architecture is best

suited for a problem?
[ What affects trainability?

= Scalability
O Generalization power?

" Ansatz choice
| | Tra i n i ng [l ﬂData Loading  (2) Data Processing  (3) Measurenh

= Scalable error correction -

Ansatz

=  Overcome barren plateaus problem

KU (inputs) V(weights) /

“The question on whether quantum computers can really play a role in

identifying practical ML application is still wide open, and it is unlikely
to be decided by theoretical proofs or small-scale experiments”.
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SOFTWARE FRAMEWORKS

Quantum machine learning

%Qiskit XX siLo T Cirg

High-Level Quantum Programming
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QUANTUM FEDERATED LEARNING

Quantum Federated Algorithm Workflow

Datasets of Distribution i ;imensionality Quantum i i
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Quantum Science and Technology

PAPER

Federated quanvolutional neural network: a new paradigm for
collaborative quantum learning
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QUANTUM FEDERATED LEARNING

Algorithm 1 Quantum Federated Learning Aver-
aging Algorithm

1:

11:
12:

13:
14:
15:
16:
17:

e B AR el

Input: D devices such that d=1, 2,..., D, ny is the
number of samples available with cllent, B repre-
sents batch-size, E is the number of local epochs, R
denotes communication rounds, 1, 77s are the learn-
ing rates of local client and global server, respec-
tively.

LocalDevice(d, 6):

for r=0 to R-1 do

Send 6, global server parameters
device.

for each d € D do

9d+1; « LocalDevice(d, %),
end for
Orire — 0% —m S0, Lo
end for

2~ FERDUE

Objective: Develop a quantum federated learning (QFL)
framework to tackle the optimization, security, and
privacy challenges in the healthcare and clinical
industries for medical imaging tasks.

for i=1 to E do Cllent 1 local database Q1 node — = Aggregation
A1 < = f
for be B do g— v & = a99r
0% + 6% — iV F(6%,b) ORI G
end for ' ~ g Bilocel
Leamab\e quantum circuit Pooling ful\y connected Softmax ="
end for Client 2 local database Q2 node o O — o Ed
return 6% to Server = = e P Ho Y Baggr
T B et i,
GlobalServer: [ -~ - 2| INE=~"1"§ v #
T =~[oss . —_| III- 7 R Central Server & Global Model
Initialize 61s --[am [ ] AT 5-ON0 flocal
-- “ Learnable quantum circuit

Pooli

Client n local database

r‘t«:‘s

ng fully-connected Softmax agqr
i % ) 0, local
, \ =

T —— Sending local model updates
— ',- f ’ *lL_I —— Sending global model updates

Learnable quantum circuit  Pooling fully-connected  Softmax




QUANTUM FEDERATED LEARNING
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QUANTUM FEDERATED LEARNING

1.00 2.00
Abdomen CT — - —
10000 - mmm Breast MR E : 2: TOT ESL B8 C710 QUNN
Chest CT | e 1.754 9 #— E=1, B=8, C=20 QCNN
0.95 - - -
Cheet XR 1 —0= E=1, B=8, C=50 QCNN
8000 - Hand - I 1.50 =m E=]1, B=8, C=10 CQNN
Head CT Y 0,90 l' Target accuracy " E=1, B=8, C=20 CQNN
e I @ 1,251 4 == E=1, B=8, C=50 CQNN
6000 - o] i !
<0851 |
o F
4000 | é : E=1, B=8, C=10 QCNN
2 0.80 l' E=1, B=8, C=20 QCNN
i E=1. B=8, C=50 QCNN
2000 - I E=1, B=8, C=10 CQNN
l 0.75 : E=1, B=8, C=20 CQNN .-
0 = h E=1, B=8, C=50 CQNN o vy W
' ' ' ' ; ; ' ; 0.70 = : : : : 0.00-1- ; . . .
DO B B! B B R B B 0 500 1000 1500 2000 0 500 1000 1500 2000
c c c c c c c c c = . . . .
¢4 ¢ ¢ © @ @€ 9 O O © Communication Rounds Communication Rounds
O O 0O 0O 0O 0 0 0 0 ©
Abdomen CT-1859.0 8 4 0.0 1750 MedNIST dataset
Breast MRI - 00 0.0 00 1500 Non-IID2 distribution
C | E| B CNN CQNN
o edu® 17.0 0.0 00 0.0 1250 i Q i JQ
- 1000 10 1] 8 | 1152 (1.69%) | 1139 (1.72x)
Chest XR JETH WOTPR 1577.0 QTR d
750 20 1 8 1493 (1.30x) | 1583 (1.23x)
s o B . 50 | 1 8 | 1806 (1.02x) | >2000 (0.74x)
250
Head CT 20 5 8 397 (4.91x) | 927 (2.10x)
0
& @ & & Q 10 1 32| >2000 (0.64%) | >2000 (0.47x)
&QF‘ & &\e’;} ‘(\vf}' tS
s & © 1> 10| 5 | 32 624 (3.12)() 959 (2.03)()
Predicted

2~ FERDUE




QUANTUM FEDERATED LEARNING
Quantum Convolutional Neural Networks (QCNNSs) in Federated setti

(a) (b) (©) (d)
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Conclusion

= Demonstrated the resilience and consistency of the federated hybrid
models when confronted with inadequate and unevenly distributed
training data.

= Federated quantum model takes fewer rounds for training on increasing
the client fraction.

= The tuning of a batch-size (B) parameter is essential to maintain a
balance between computational efficiency and convergence rate.

= On adding up the computation on the client side by either increasing

local epochs (E), decreasing batch size (B), or both to reduce the
communication rounds in a quantum federated learning framework.

2~ FERDUE



Thank youl
Questions?

ﬁ) Amandeep S. Bhatia: bhatia87@purdue.edu
https://drasbhatia.netlify.app/

Elmore Family School of Electrical
and Computer Engineering
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