The Mixed-Integer Nonlinear Decomposition Toolbox in Pyomo (MindtPy)

Zedong Peng¹, Ignacio E. Grossmann², David E. Bernal Neira¹

¹Davidson School of Chemical Engineering, Purdue University ²Department of Chemical Engineering, Carnegie Mellon University PSE Seminar October 20th, 2023

Introduction

MindtPy

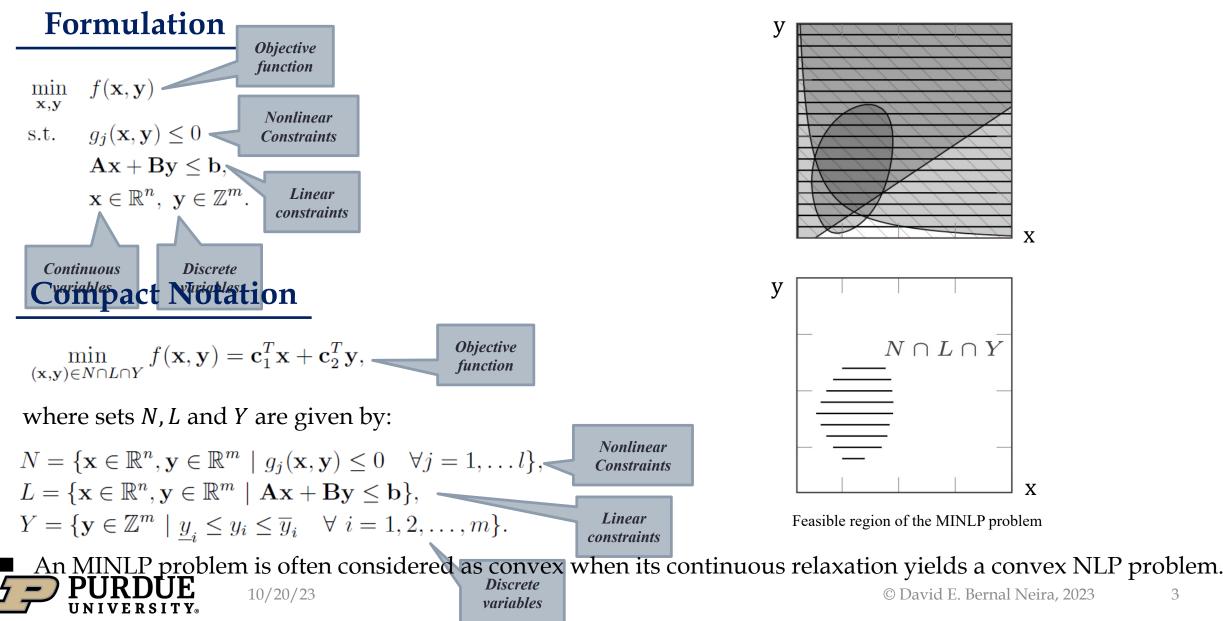
- MindtPy (Mixed-Integer Nonlinear Decomposition Toolbox in Pyomo) is an open-source meta solver that allows users to solve both convex and nonconvex Mixed-Integer Nonlinear Programs (MINLP) using decomposition algorithms.
- These decomposition algorithms usually rely on the solution of Mixed-Integer Linear Programs (MILP) and Nonlinear Programs (NLP).

Supported Algorithms

Convex MINLP

- Extended Cutting Plane
- Outer-Approximation
- LP/NLP based Branch-and-Bound
- Regularized Outer-Approximation
- Regularized LP/NLP based Branch-and-Bound

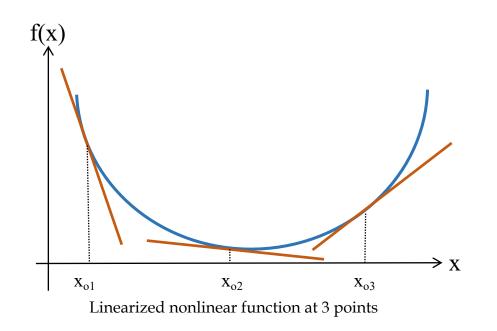
10/20/23


• Feasibility Pump

Nonconvex MINLP

- Outer Approximation
 - Equality Relaxation
 - Augmented Penalty
- McCormick-relaxation-based Outer-Approximation

Notation



Decomposition methods for convex MINLP

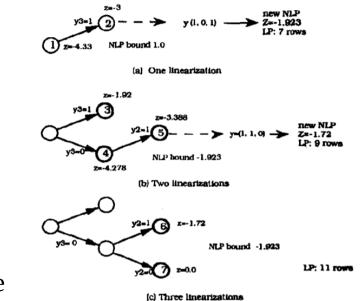
Fixing a subset of variables makes the problem in the rest variables considerably more tractable

- **Complicating** variables are the **discrete variables** (MINLP→NLP)
- **Decompose** MINLP
 - MILP master problem
 - Continuous subproblem
- Several methods have been proposed
- Outer-Approximation (**OA**)¹
- Partial Surrogate Cuts (**PSC**)²
- Extended Cutting plane (ECP)³
- Generalized Benders Decomposition (GBD)⁴
- Extended Supporting Hyperplanes (ESH)⁵
- 1. Duran M., Grossmann, I.E. "An outer-approximation algorithm for a class of mixed-integer nonlinear programs." 1986.
- Quesada, I., Grossmann, I.E., "An LP/NLP based branch and bound algorithm for convex MINLP optimization problems." 1992

10/20/23

- Westerlund, T., Pettersson, F., "An extended cutting plane method for solving convex MINLP problems." 1995
 Geoffrion, A.M., "Generalized Benders decomposition." 1972
- 5. Kronqvist, J., Lundell, A., Westerlund, T., "The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming." 2016

Decomposition methods for convex MINLP


- When iteratively solving the MIP master problems:
 - Practically the same MILP BB tree close to the root.
 - Expensive to set up new MILP at each iteration
 - Why not a single MILP tree and then add cuts?
- LP/(NLP)-based BB^{1,2}
 - Have a single MILP problem (single-tree approach³)
 - Whenever an integer solution is found, fix it and solve continuous problem
 - Add cuts.
- Multi-tree Solvers: DICOPT (OA), a-ECP (ECP), BONMIN (OA), Muriqui

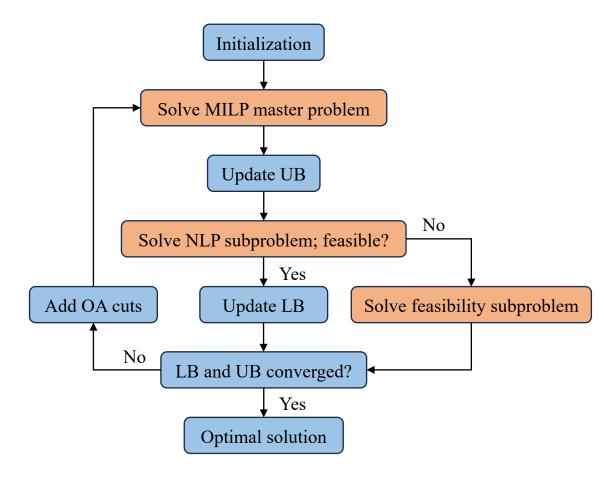
nonlinear programming." 2016

nonlinear programs." 2010

3.

- Single-tree solvers: SHOT (ESH), AIMMS OA, BONMIN, MINOTAUR
- 1. Quesada, I., Grossmann, I.E., "An LP/NLP based branch and bound algorithm for convex MINLP optimization problems." 1992
- 2. Kronqvist, J., Lundell, A., Westerlund, T., "The extended supporting hyperplane algorithm for convex mixed-integer

LP/NLP BB method from Quesada and Grossmann $^{\rm 1}$

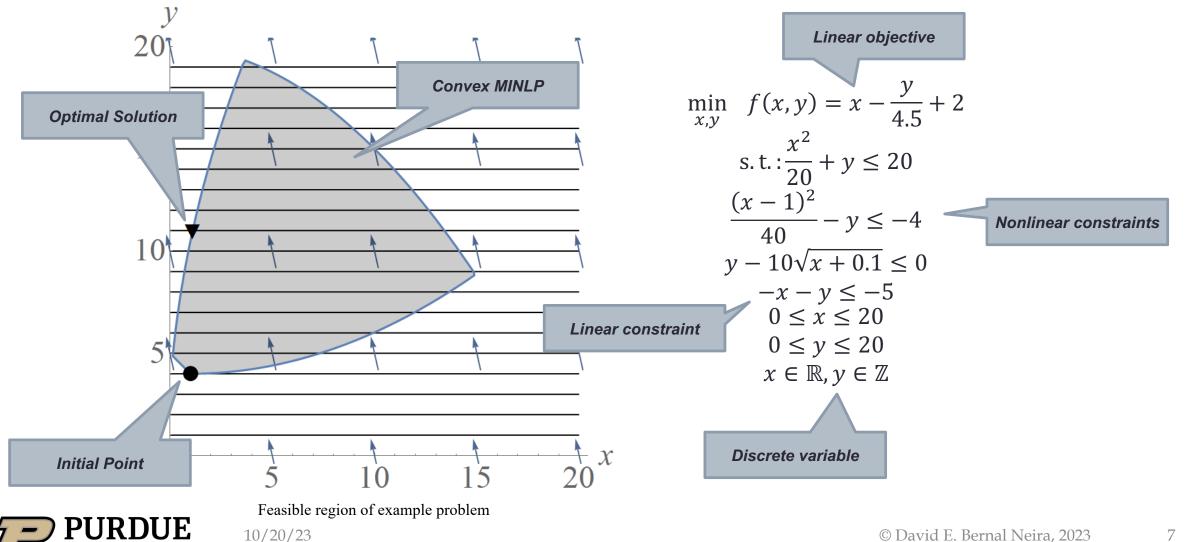

10/20/23

© David E. Bernal Neira, 2023

Abhishek K, Leyffer S, Linderoth J "FilMINT: an outer approximation-based solver for convex mixed-integer

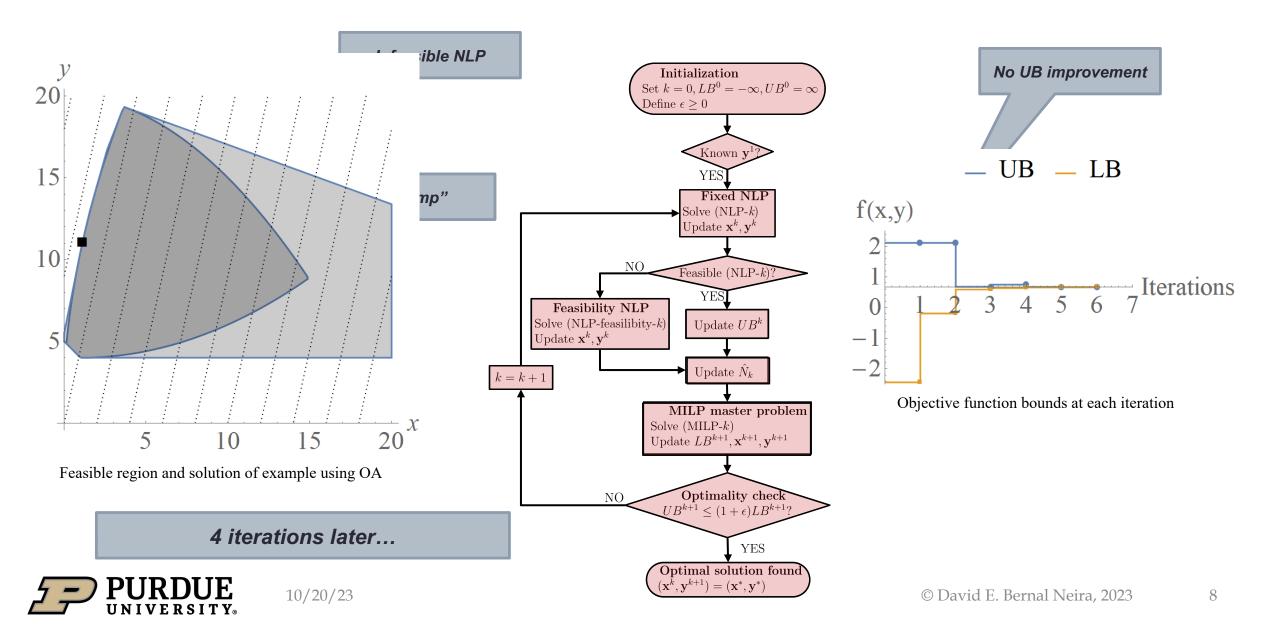
Outer-Approximation (OA) method

- Iterates between master MILP problem (LB) constructed with the 1st order Taylor approximations and the NLP subproblem with fixed discrete variables (UB).
- **LB** predicted by MILP master problem is **at least as good** as with GBD and PSC.
- Converges to the **global optimal solution** of convex MINLP.
- MINLP solvers as **DICOPT** and **BONMIN**.

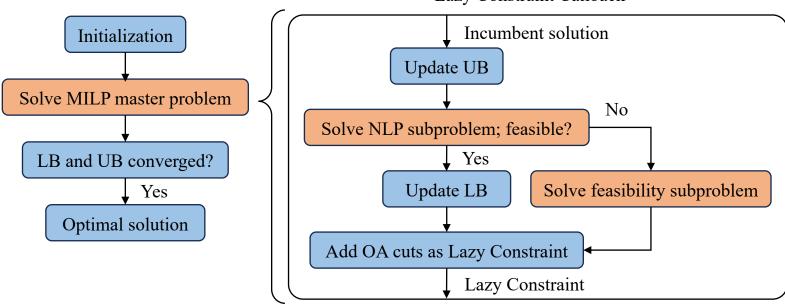

1. Duran M., Grossmann, I.E. "An outer-approximation algorithm for a class of mixed-integer nonlinear programs." 1986.

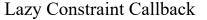
6

UNIVERSITY


Outer-Approximation (OA) method - Example

UNIVERSITY


© David E. Bernal Neira, 2023

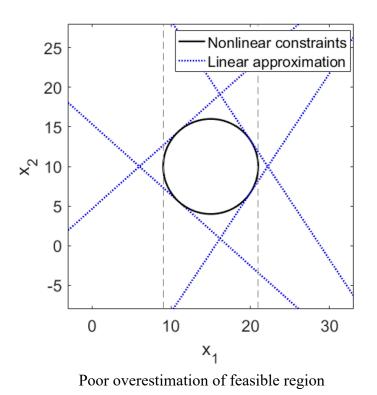

Outer-Approximation (OA) method - Example

LP/NLP-based Branch and Bound

- Proposed by I.Quesada and I.E.Grossmann in 1992.
- Only need to solve the MIP master problem once.
- Usually solves more fixed-NLP subproblem.
- Also called single-tree implementation.

Outer approximation (OA) method - Method limitations

Inherits limitations cutting plane method NLP

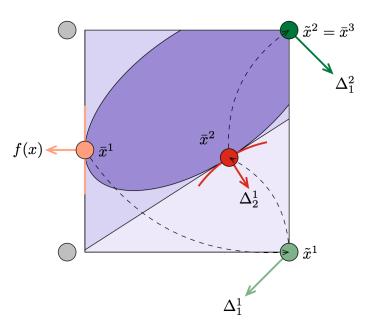

• Performance as good as linearization

```
\rightarrow Poor performance if highly nonlinear<sup>1</sup>
```

- Solutions of MILP master **more likely to lie outside** nonlinear constraints
 - Infeasible NLP subproblems
 - No new **UB**
- Integer combinations may "jump" in search space
 - Has been shown to be unstable²

10/20/23

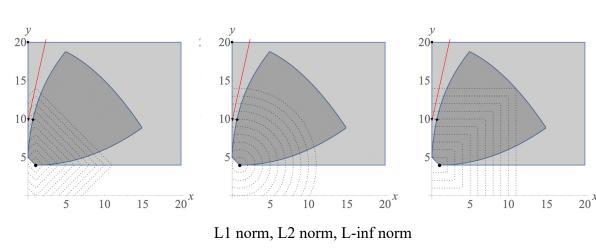
• The OA cut is only valid for convex MINLP.

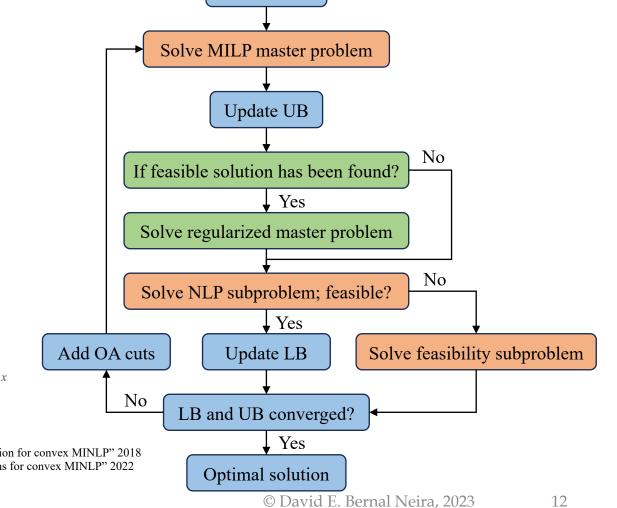


Feasibility pump algorithm for convex MINLP

- Highly nonlinear constraints → Poor linear approximations → Solution outside of the feasible region
- Iterations of MILP-NLP solely focused on feasibility → Feasibility Pump
- In MindtPy, feasibility pump can be used as
 - An initialization method
 - A standalone method to find a δ -optimal solution.
- Distance calculation (L1, L2, L infinity norm)

10/20/23


Feaspump-OA $(\mathbf{x}^{k+1}, \mathbf{y}^{k+1}) \in \underset{\mathbf{x}, \mathbf{y} \in \hat{N}_k \cap L \cap Y}{\operatorname{arg\,min}} ||\mathbf{y} - \mathbf{y}^k||_1$ (FP-MILP-k) $(\mathbf{x}^k, \mathbf{y}^k) \in \underset{(\mathbf{x}, \mathbf{y}) \in N \cap L}{\operatorname{arg\,min}} ||\mathbf{y} - \mathbf{y}^k||_2$
s.t. $\mathbf{y} = \mathbf{y}^{k+1}$ (FP-NLP-k)


1. B., Vigerske, Trespalacios, Grossmann, (2019). "Improving the performance of DICOPT in convex MINLP problems using a feasibility pump."

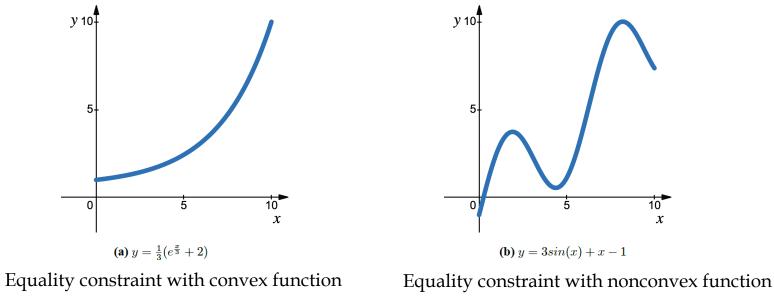
Regularized OA and Regularized LP/NLP B&B

- Cutting plane approach may be unstable (Big jump) → Regularization term
- Solution of Regulization problem in every iteration
 - Norm based regularization
 - Lagrangean-based regularization
- Equivalent to **trust region** approach for MINLP
- Efficient for highly nonlinear MINLP models.

10/20/23

Initialization

Kronqvist, J., Bernal, D. E. and Grossmann, I. E. "Using regularization and second order information in outer approximation for convex MINLP" 2018
 Bernal, D. E., Peng, Z., Kronqvist, J., & Grossmann, I. E. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP" 2022

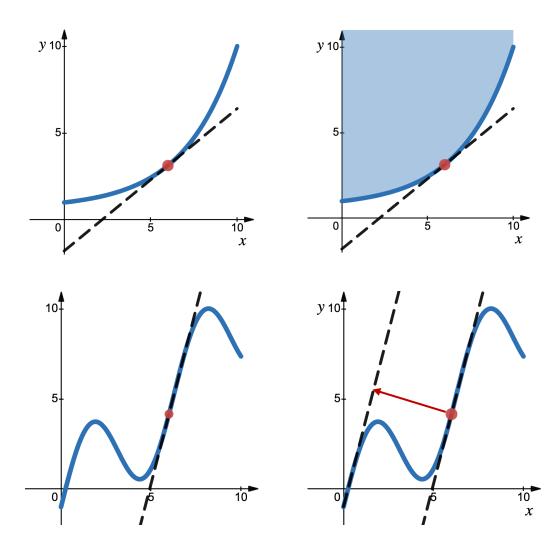


Outer-Approximation for Nonconvex MINLP

Convergence guarantee

- Assumption 1. The nonlinear functions $g_1, ..., g_l : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ are convex and continuously differentiable.
- Assumption 2. The intersection $L \cap Y$ defines a compact nonempty set, i.e., all variables must be bounded.
- Assumption 3. For each feasible integer combination **y**, an integer combination such that there exist **x** variables for which the problem is feasible, a constraint qualification holds.

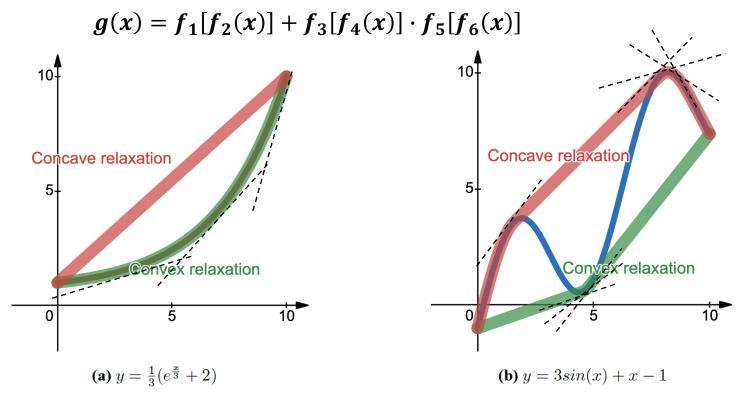
Therefore, Outer Approximation cuts does not apply to Nonconvex MINLP.


10/20/23

Outer Approximation for Nonconvex MINLP

- Equality relaxation
 - Convexity of the nonlinear functions
 - The equality constraint can be relaxed to be an inequality constraint.

- Augmented Penalty
 - Add slack variable on the right hand side.


10/20/23

McCormick relaxation-based Outer Approximation

- Proposed by G P. McCormick in 1976 for NLP.
- Generate the convex and concave relaxation for nonconvex factorable functions.
- Factorable functions is a a collection of elementary operations (e.g., sum, product). The general form is

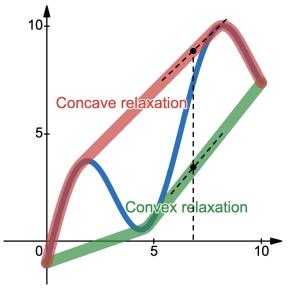
1. McCormick G P. Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems[J]. Mathematical programming, 1976, 10(1): 147-175.

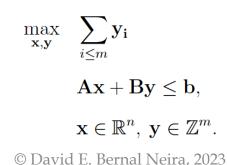
McCormick relaxation-based Outer Approximation

Convergence guarantee

- With the McCormick relaxation-based cuts, cycling might happen and bounds might not meet.
 - \rightarrow No-good (Integer) cuts
 - \rightarrow Tabu list

$$\sum_{j \in V_1} y_j - \sum_{j \in V_0} y_j \le |V_1| - 1, where V_1 = \{j | y_j = 1\} and V_0 = \{j | y_j = 0\}$$


Fix Bound


- The dual bound is not valid due to no-good cuts and tabu list.
 - \rightarrow Solve an extra relaxed problem.

Initialization

- The relaxed NLP problem might be hard to solve.
 - \rightarrow Solve an MILP to maximize the sum of binary variables.

 \min

 $_{\rm x,y}$

s.t.

Formulation

Grey Box

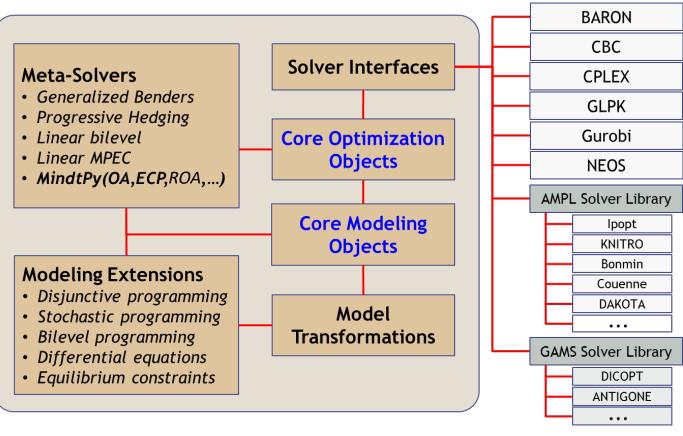
Objective function Wide application in complex systems engineering, materials $f(\mathbf{x}, \mathbf{y})$ drug chemical design, discovery, synthesis, process Nonlinear $g_j(\mathbf{x}, \mathbf{y}) \le 0$ computational biology. **Constraints** $Ax + By \leq b$, $\mathbf{x} \in \mathbb{R}^n, \ \mathbf{y} \in \mathbb{Z}^m$. Output Input Linear *constraints* Black Box **Continuous** Discrete variables variables Input Output Grey Box Jacobian,

- In an MINLP model, we can replace the equality constraint with a GreyBox. ٠
- MindtPy is able to solve MINLPs with GreyBox. •
 - Use CYIPOPT as the NLP solver. •

Hessian

Key features of MindtPy

- MIP Solver
 - CPELX, Gurobi, Highs, CBC, GLPK, GAMS
- NLP Solver
 - IPOPT, BARON, CYIPOPT, GAMS
- Master problem
 - MILP, MIQP, MIQCP
- Cuts
 - OA cuts, No-good (Integer Cuts), McCormick-relaxation-based cuts
- Initialization Method
 - Relaxed NLP, Max binary, Initial binary, Feasibility pump
- Distance Calculation
 - L1, L2, L infinity norm
- Other enhancement
 - Solution Pool, Tabu list, Greybox



Implementations

- **Pyomo: Py**thon **o**ptimization **m**odeling **o**bjects¹
- Use of **python expands** skilled **user base** •
- **Open repository** at **Github** •

Example ۲

from py	omo.environ import *
model =	<pre>concreteModel()</pre>
	<pre>var(bounds=(1.0,10.0),initialize=5.0)</pre>
,	y = Var(within=Binary)
	<pre>1 = Constraint(expr=(model.x-3.0)**2 <= 50.0*(1-model.y)) 2 = Constraint(expr=model.x*log(model.x)+5.0 <= 50.0*(model.y))</pre>
	bjective = Objective(expr=model.x, sense=minimize)
SolverF	actory('mindtpy').solve(model, mip_solver='qlpk', nlp_solver='ipopt'

PURDUE

UNIVERSITY

10/20/23

Design and Architecture

Algorithm base class		Subclass	Algorithm Specified
Attributes		→ Outer-Approximation -	
Attributes• MIP problem•• Fixed NLP subproblem•	MethodsSolve MIP problemSolve fixed NLP subproblem	Extended Cutting Plane	Termination criteria
	 Solve feasibility subproblem Solve regularization problem Generate Cut 	Regularized Outer-Approximation	
	Update bound	→ LP/NLP based Branch & Bound	
 Config Incumbent solution Best found solution 	Check configuration	→ Global Outer-Approximation	
 Logger 		→ Feasibility Pump	

- Object-oriented.
- Easy extension and modification of the core algorithm.
- Easy to integrate with other modules in / based on Pyomo, eg. SUSPECT.

Benchmark

Matched benchmark repository

https://github.com/SECQUOIA/pyomo-MINLP-benchmarking

Convex instance

 438 instances that have at least one discrete variable and at least one continuous variable in MINLPLib.

Nonconvex instance

• 129 non-convex MINLP in MINLPLib which are non-convex and have < 100 binary variables.

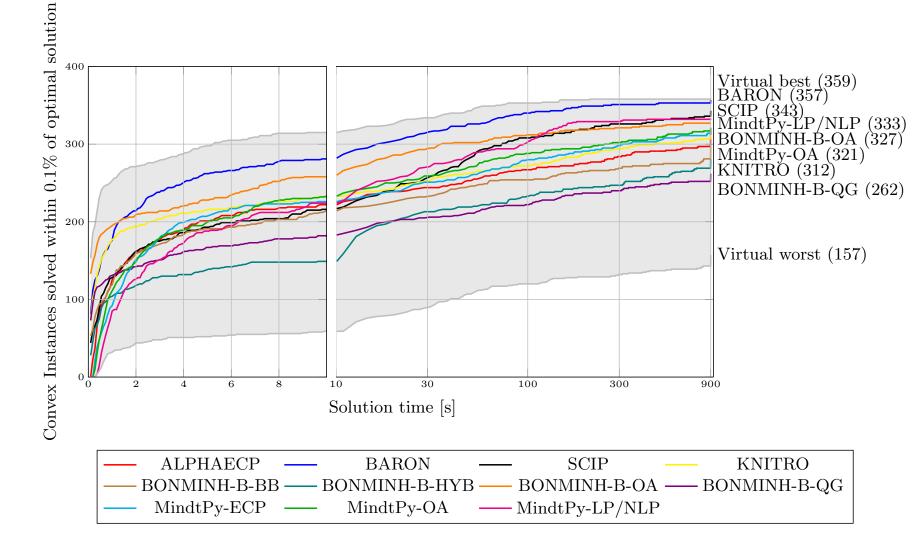
Computation environment

- Linux cluster with 48 AMD EPYC 7643 2.3GHz CPUs and 1 TB RAM.
- The thread is limited to 1 for each run.
- Time limit of 15 minutes per instance.

Solver version

- CPLEX 22.1.0.0
- GUROBI 10.0.0
- GAMS 44.3 10/20/23

- SCIP 8.0
- KNITRO 13.2
- BONMINH 1.8

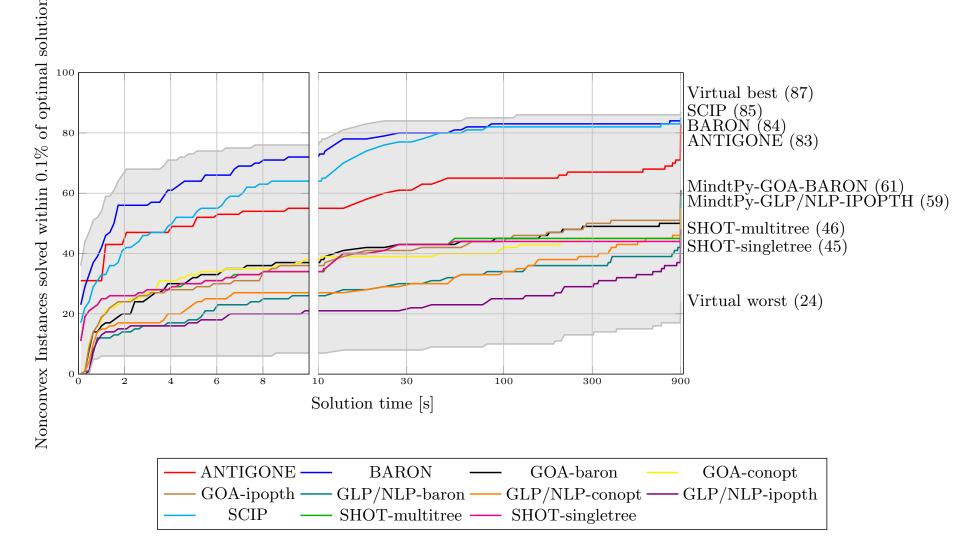

- IPOPTH 3.14
- BARON 15.6.5
- CONOPT 4.02 © David E. Bernal Neira, 2023

Computational results - Convex

10/20/23

MindtPy

- MIP solver
 - GUROBI
- NLP solver
 - IPOPTH


MindtPy holds the 3rd place among BARON, SCIP, BONMINH, KNITRO.

Computational results - Nonconvex

MindtPy

- MIP solver
 - GUROBI
- NLP solver
 - IPOPTH
 - CONOPT
 - BARON

There is a huge space for MindtPy to improve.

10/20/23

Thanks for your attention.

The Mixed-Integer Nonlinear Decomposition Toolbox in Pyomo (MindtPy)

Zedong Peng¹, Ignacio E. Grossmann², David E. Bernal Neira¹

¹Davidson School of Chemical Engineering, Purdue University ²Department of Chemical Engineering, Carnegie Mellon University PSE Seminar October 20th, 2023

