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* Formulation development
* Process development
* Process de-risking and transfer

* Process Monitoring
o MSPC for fault detection and isolation
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* Formulation development
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Formulation development

* Mechanistic modeling at this stage requires the
ability to predict the bulk-level behavior from
the particle-level information in a multi-
component mixture.

o Mechanical behavior
o Chemical interactions
—This is very complex and so far non-attainable.

* Mine the data from past experlments
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Formulation development

* Mining data from previous experiments.
o Modeling data from previous products

o In-silico formulation development
o Surrogate selection for experimental design
o Including material variability
—When you have access to materials
—When you don’t
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Formulation development

* Mining data from previous experiments.
o Modeling data from previous products
0
0
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Formulation development

* Product development data is complex
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Formulation development

* Product development data is complex
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Formulation development

Materials
—
Materials

w0 Option A

(]
v B Best for overall
o— . () .
£ , Materials wl|l & understanding
v Properties w B Ll £
ol ) + o
Q + 9,

- Q
o o Properties o
2 <
\4 o
Materials
= rd w0 b w
= v RN | BV BN | B Final Product
= . . o v v SIS v J 3 .
= Ratios Ratios = S E ks S E g 2 —_— Properties
8 e &S|l &£ & S|l &£ and metrics
X © < (0 <
wY [ o
N Operation 1 Operation2 /
Response

Regressor

20th NPTE Conference - Tokyo 2023



Formulation development

Materials
—
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Formulation development
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Formulation development

* TPLS

designed to
add process
information
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ing a TPLS or JRPLS model

* The objective of us
understanding.

Loadings for

material properties
across materials
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Formulation development

* The objective of using a TPLS or JRPLS model is

understanding.
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Formulation development

* The objective of using a TPLS or JRPLS model is

understanding.
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Formulation development

* A new product likely introduces a new material
for which there is not experimental data yet.

* TPLS and JYPLS assign a loading per material.
* No material = No loading

* Without a loading we cannot predict

* Need a different approach



Formulation development
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Formulation development

Experiments
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Formulation development

Properties Properties Parameters Parameters
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Formulation development

Analysis of Multiblock and

¢ ThiS data can be regressed Hierarchical PCA and PLS Models -
. J. Chemometrics 12, 301-321 (1998)
with a MBPLS model
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Formulation development

* Although the MBPLS model does not explicitly
model the relationships across material and
product characteristics, it allows the exploration
of new materials.

* Given that they are characterized with the same
properties as their predecessors

* Loadings are assigned to properties not directly
to materials.
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Formulation development

Int. Mat. Propsi,Y = f(RXi, RXi,, ..., RXi,,, Process,, Processy, ..., Process,, IMPn)

RXi, = RyxXm Analysis of Multiblock and
\ } Hierarchical PCA and PLS Models -

. . J. Chemometrics 12, 301-321 (1998)
This allows us to use this model

formulation to predict new

materials
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Formulation development

* Mining data from previous experiments.
o Modeling data from previous products
o In-silico formulation development
O

O



Formulation development

* Once we have a predictive model where
Int.Mat. Propsi,Y = f(RXi,, RXi,, ..., RXi , Process,, Process,, ..., Process,, IMPn)

RXi_ = R_xXm

* The available inputs to the model are:

oR,,, Processq, Process,,..., Process,,

L Choices of materials
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Formulation development

* How to use such model in developing a new
formulation:

A. Human driven trial and error: generate
different choices of materials and ratios (R,)
and process conditions and examining the
model predictions.

B. Use optimization methods.
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Formulation development

* Optimization based formulation

o Components of an optimization formulation

1. Objective: Quantitative scalar that we seek to
minimize or maximize

2. Degrees of freedom: Variables that the optimizer will
use to achieve its objective

3. Constraints: Conditions that the optimal solution
must comply with (=, > or < statements)
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Formulation development

* Optimization based formulation

o lllustrative Example
1.  Objective: maximize dissolution at 30 min

2. Degrees of freedom: Choice of disintegrant and lubricant
and percentages in formula and tablet press conditions.

3. Constraints:

1. The Model [this is what relates the df with the obj]
Min. hardness < Tablet hardness < Max. hardness

2
3.  Tablet Weight RSD <2 %
4 Formulation needs to add up to 100%

20th NPTE Conference - Tokyo 2023



Formulation development

* Optimization based formulation

o How do optimizers work?

—Gradient based: will use derivatives (or approximation of the
derivatives) of the objective function with respect to the
degrees of freedom to find the optimal solution.

—Blind search (popular with ML): Use of extensive sampling to
search the solution space and find a better solution than the
initial guess.
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Formulation development

* Optimization based formulation
o If there are multiple objectives

—One solution is to use the sum of the weighted
objectives

o The mathematical formulation of the problem is very
Important

—“Choosing materials” is much better when binary
variables are involved in the formulation

—Use realistic constraints
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min <Z(5'i(n) —y?'gerf)

s.t.
y(n) = QTnew(n)

Formulation development

Toew(n) = W [T (m)rxi” ()]

* Actual example from Computers and Chemical " (1) = [y ()P ()X ey (M)XK (M) ()]
Engineering 60 (2014) 396— 402 spex(n) = 3 (T (M (m)]| = Proew(n))
A
Tnewa(n)\ 2
HotT%n):Z( p )

a=1
spex(n) < spe_upper_limit

HotT%(n) < hot2_upper_limit
z)(n) < z_max,

z/(n)>z_min;

z/(n) = z_fixed,

yi(n) < y-max;

yi(n)=y-min;

Vj = [api, ex1, ex2, ex3, ex4]
rxi;(pj, n) = er(mjs n)x;(pj, m;)

m;

rj(m;, n) < rbinary;(m;, n)
E rj(mj, Tl) =1
m;
mass;(m;, n) = rj(m;, n) x mass_required;

Zmass(mj, n) < mass_available(m;)

n
Zrbinaryj(mj, n) < max _num_lots_to_blendj
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Formulation development

* Examples, references

o International Journal of Pharmaceutics 418 (2011) 235— 242
o Ind. Eng. Chem. Res. 2012, 51, 12886-12900

o Ind. Eng. Chem. Res. 2013, 52, 5934-5942

o Ind. Eng. Chem. Res. 2013, 52, 8260-8271

o Computers and Chemical Engineering 60 (2014) 396—- 402

o Chemical Engineering Research and Design 92 ( 2014) 534-
544
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Formulation development

* Mining data from previous experiments.
o Modeling data from previous products
0
o Surrogate selection for experimental design

O



Formulation development

* Surrogate selection: Choose an alternative
(more accessible, safe or cost effective) material
that is similar to the drug to carry out
development work.

* Great idea!
o Define similar?
o With respect to what ?
o How similar is “similar enough” ?
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Formulation development

* All interesting questions being explored by the

research group of Prof. Thomas DeBeer @Ghent
University.

MATERIALS AND METHODS

MATERIALS AND METHODS

““““““““

““““““““
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Formulation development

* Mining data from previous experiments.

O
O
O
o Including material variability
—When you have access to materials



Formulation development

* Material variability is perhaps one of the most
challenging risks to address at the R&D stage.

o Not many lots are consumec

o Vendors are getting involvec

in development
and greatly helping

their customers address this question.



Formulation development

SuperTab 11SD - scores
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Formulation development

* Mining data from previous experiments.

O
O

O

o Including material variability

—When you don’t



Formulation development

* Problem: We don’t have enough replicas to well
represent variability.

* Objective: Create credible clones of the available
data preserving the existing correlation across
variables and the uncertainty distributions.




Formulation development

* Cloning data using PCA and ECDF

* The Empirical Cumulative Distribution Function
can be used to draw new samples from a
population while preserving the population

distribution.

Original data 20 points New data 100 points
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Formulation development

1. Perform PCA on X

2. Create a copy of the reconstructed portion of
X=TPT

3. To each column of X add new residuals,

sampled from the population of the original
residuals using ECDF.

4. Ready.



Formulation development

* Example
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* Process development
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Process Development

* Computational tools:
o Modeling of feeders

o Modeling of mixing extent and residence time
distribution (RTD)



Modeling of loss in weight feeders

* Addressed in plenty of papers in literature:

o Yu, Y. Theoretical modelling and experimental investigation of the performance
of screw feeders. Ph.D. Thesis, University of Wollongong, 1997.

o Boukouvala et al.,Computers and Chemical Engineering 42 (2012) 30-47

o Rogers et al. Ind. Eng. Chem. Res. 2014, 53, 13, 5128—-5147

o Jia, J. Pharm. Innovation 2009, 4, 174-186.

o Bascone, Industrial & Engineering Chemistry Research, 59(14), pp-6650-6661.
o Johnson, International Journal of Pharmaceutics, 621, p.121776.
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Modeling of loss in weight feeders

* Most recent paper from RCPE
o Studied the process with multlple modeling

International Journal of Pharmaceutics g
a p p ro a C h e S N Available online 2 April 2023, 122915
ﬁi_S‘ri\']FR In Press, Journal Pre-proof @ What's this? »
“Even a very simple model that assumes perfect mixing inside A DEM Model to Evaluate Refill Strategies

the hopper is a decent approximation of the real dynamics. This
model works well for the given twin-screw feeder geometry
because the agitator mixes a large portion of the material Peter Toson* &, Johannes G. Khinast ** i
inside the feeder. Different feeder designs agitate different ‘
portions of the hold-up mass and thus have different material
survival functions. The perfect mixing model is not a universal
law across all feeders.”

of a Twin-Screw Feeder
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Modeling of loss in weight feeders

* Mixing behavior apart, the inherent challenge in modeling
loss in weight feeders is estimating the densification of
material in the base of the hopper as a function of hold up.

A A
H stress \
I mass . -
H time
stress
vYVY N

Feed
rate

Powder feed rate = Amass/Atime
From Bascone et. al. I&ECR, 59(14), pp.6650-6661.
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Modeling of loss in weight feeders

* Some work has been done to predict this
relation through the estimation of the feed-
factor from powder properties.

o Bostijn, N.Int. J.Pharm. 2019, 557, 342-353.
o Wang, Powder Technol. 2017,308, 135-148.



Modeling of loss in weight feeders

* Others have focused on
characterizing and predicting the
stochastic behavior of a feeder in
gravimetric mode.

* More work is needed in this area to
generate a truly forward-predictive
model of the feeding behavior
expected for a new material

20th NPTE Conference - Tokyo 2023
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Modeling the Residence Time Distribution

* Very large amount of publications in this topic.

* Application of reaction engineering concepts to
determine the extent of mixing along the




Modeling the Residence Time Distribution

* Two modeling approaches:
o White box model

—Calculate the speed of transit from geometry and
linear speed, which implies the knowledge of a
density [difficult for powders]

o Black box model:
—Fit the RTD curve to time explicit functions



Modeling the Residence Time Distribution

* Two modeling approaches:
o White box model
Garcia-Munoz, S. AIChE Journal, 64(2), pp.511-525.
o Black box model [most recent development]:
Toson and Doshi, Processes 2019, 7, 615

10,00 - £ (2 ool
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Modeling the Residence Time Distribution

* Either approach requires data!
* Two different experiments can be done

From Escotet-Espinosa et.al., Powder Tech. (342),15,744-763,2019

I ° 0.04 1 0.04 ;
o Tracer experiment: s X
. 0.03 0.03§v Ca(PO,),
Care is needed to select the proper tracer 6 002
0.01 L 001
0 I ol
0 40 80 120 00 40 80 120

o Step experiment: :

Cost effective and informative

From Garcia-Munoz et al., AICHE J. (64),2,516,2018




Modeling the Residence Time Distribution

* The RTD model can then produce a funnel plot

. 200 [ = S () E— 200 0% - 200
« Most Funnel plots are built as a IR | ool S
. . 2 | (&2 170
function of fed concentration o0\ s I 00
disturbances. o . | o™ | 130
3120 . <1201 20 129
1 = = o et { e
& 100 % 100 -
» Behavior not 100% symmetric 2 & g ol el T @
. . S o PEUE s ! B e b R, =
when using a white box model. Cef e 8/,70 “wl f e -
/ > = — 50—
40 i 40 = "/ <l 40 —
. 0 : 20 8 Q/ /94 0f. [ ® @/Q///’/’F’ 2
e Behavior is 100% symmetrical 1§ §F & @ s e P
Wlth bIaCk bOX mOdels . . Duration (ség;) o . - Duration (se1c(;0 -

Figure 13. Two funnel plots, for low throughput (left) and high throughput (right).

From Garcia-Munoz et al., AICHE J. (64),2,516,2018
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Modeling the Residence Time Distribution

* Funnel plots as a function of mass flow disturbance

FP are non-linear.

and dependent on
relative mass-flows from
one feeder to the other.

Feeder with greatest
mass-flow has largest
effect.

Example assumes all
other feeders are kept at
target.
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Modeling the Residence Time Distribution

* Uses:
o Disturbance detection and control.
o Genealogy tracking for incoming material.



* Process de-risking and transfer
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Process de-risk and transfer

* Areas of risk are very few:

o Main potential source of disturbances is the
dispensing of materials [feeder performance]

* Mitigation strategies
o Use ratio control
o Quantitation of disturbance effects



Process de-risk and transfer

 Ratio-control ensures concentration at the cost
of small variation in mass-flow.

Formula A in Local Mode (Massflows and Setpoints)

= Drug Substance

- Excipient 1

- Excipient 2

<
~ Excipient 3 .
0.8 = b G _ - — - Adj Scrow
Speed

Excipient Feeder, repeated for each additional excipient

Massflow (kg/h)

From Hanson, Powder Tech.(331),15,236-243,2018

0 2 4 6 8 10 12 14
Process Time (min)
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Process de-risk and transfer

 Ratio-control ensures concentration at the cost
of small variation in mass-flow.

Formula A in Ratio Mode (Massflows and Setpoints)

«~—Drug Substance

—Excipient 1

=Y

—Excipient 2

-

1

<
» _— -~ Excipient 3
- Adj Scrow
Speed

Excipient Feeder, repeated for each additional excipient

e
o
L

Massflow (kg/h)

e
'S

From Hanson, Powder Tech.(331),15,236-243,2018

e
N

Process Time (min)
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Process de-risk and transfer

* Quantitation of disturbance = m %

effects T N—
o Parse though data acquired = g S — |
during development and g o ———

3
\

N B
o o
%
\
\
\
.2 S
o \ :
\

clinical manufacture.

20 40 60 80 100 120 140 160

o Characterize all [even small] o
diSturbanCeS frOm Set'pOint. Figure 14. Funnel plot o::::;(n i:::i all events (i.e., dis-

turbances) from historical data supporting

o Place disturbances in funnel Prosess development
dlot.
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* Process Monitoring
o MSPC for fault detection and isolation
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Process Monitoring - MSPC

* Multivariate Statistical Process Control (MSPC) is
an established method for monitoring and fault
detection.

* Established in 1994.
* Plenty of software available commercially.

* Mostly implemented in bio-pharmaceutical
processing.



Process Monitoring - MSPC

Model built with data from 6
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Process Monitoring - MSPC

Continuous
Dispensing

Continuous
Blending

Continuous
Tablet
Compression

Model built with data from 6

il Mass Flow
Variability in different molecules

internal control Variability
system - (e.g. Start up)

- Fill Depth & Main & Pre-
Rotor Speed 2 Compression
Variability Force Variability

acturing



Process Monitoring - MSPC

Model built with data from 6

Monitoring the Startup of the Feedeers different molecules

www,gif-animator.com - UNREGISTERED
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Process Monitoring - MSPC

°] Model built with data from 6
6] different molecules
A 4 .
Continuous 2
Dispensing = o]
0
4 —
-2 -
2 -
Continuous -4 - 'S'
Blending 0
_6_
-1I0 -2 —
-4 -
Conti
ST Same API E
ompression . R R L L S B
different formula IR A A

T[]

Different API and
different formula
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Process Monitoring - MSPC

* Details that need close attention.
o Management of lags

—Variables are sampled throughout the train and
the interactions are not instantaneous (hence
RTD)

* A lagged model runs at the slowest dynamics
* No time to react

* A non-lagged model requires more latent variables
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Process Monitoring - MSPC

* Very interesting new method:

Journal of Process Control 67 (2018) 1-11

Contents lists available at ScienceDirect

Journal of Process Control

journal homepage: www.elsevier.com/locate/jprocont

Joumal of
Process Control

A novel dynamic PCA algorithm for dynamic data modeling and
process monitoring

Yining Dong®¢, S. Joe Qin®%*

2 Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
b Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA 90089, USA
¢ School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Blvd., Longgang, Shenzhen, Guangdong, China

Computers
& Chemical

Computers & Chemical Engineering Eninerig
Volume 114, 9 June 2018, Pages 69-80

¥y o

ELSEVIER

Dynamic latent variable analytics for
process operations and control

Yining Dong ®®, 5. Joe Qin 2% ¢ o
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Process Monitoring

* DiPCA aims to capture latent-spaces that are
auto-regressive.

o Explicit modeling of lags
* Model semi-oscillatory behavior

>
n 8-
4 ¥ pizd
&3 1 M e
a .-':k- o ¢ ! 3 "'}.ﬁ.
SN b % 7
"{' -
N o B
= AL
* W
e b 5 2
5 .30' w
2N T
e r. e ”‘. 1 a
,;;t:_.: N
5

20th NPTE Conference - Tokyo 2023



Final Remarks

* The systems engineering community has and
continues to develop useful computational
approaches that can be exploited to accelerate
product development and de-risk process
operations.

 Continuous manufacturing is very amenable to
the implementation of these tools.



* Let’s talk!

sal.garcia@lilly.com



