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Preliminaries

▶ The generating units and demands
are distributed throughout a
network, which is composed of
nodes and edges.

▶ The matrix encoding the network
information is known as nodal
admittance matrix.

▶ Every node is characterized by a
complex voltage and a complex net
power injection.

`
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AC Optimal Power Flow (AC-OPF)

▶ The AC-OPF (or some approximation thereof) is the cornerstone of the operation and
planning of power systems and is generally solved multiple times a day by power system
operators worldwide.

▶ Its goal is to determine the most economical production levels of generating units to
supply the demand while satisfying physical and engineering constraints.
▶ Physical constraints model the nonconvex governing physical laws, Ohm’s law and Kirchhoff

law, known as power flow equations.
▶ Engineering constraints model voltage, angle difference, transmission, and generation limits.

▶ In this talk: Complex voltages in rectangular coordinates ⇒ nonconvex QCQP.
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AC Optimal Power Flow Formulation

The AC-OPF can be formulated as a nonconvex quadratically constrained optimization problem

min
x

f (x)

subject to Ax = b,
gi (x) ≤ 0, i = 1, . . . ,m2

x P Rn.

▶ f : Rn → R the convex objective function
▶ A P Rn×m1 the constraint coefficient matrix
▶ b P Rm1 the constraint coefficient vector
▶ g : Rn → R the quadratic (convex and nonconvex) constraints

The AC-OPF is known to be NP-hard [Bienstock et al., 2019].
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Relaxations and approximations for AC-OPF

Substantial efforts have been devoted to finding tractable surrogates

Relaxations
▶ Provide lower bounds.
▶ Infeasibility certificates.
▶ Linear: Copper plate and Network

flow [Coffrin, H. Hijazi, et al., 2016]

▶ Second-order conic: [Jabr, 2006; Kocuk
et al., 2016]

▶ Quadratic convex: [Coffrin, H. L. Hijazi,
et al., 2016]

▶ Semidefinite: [Bai et al., 2008]

Approximations
▶ Based on two ideas:

1. Engineering assumptions (line parameters,
voltage magnitudes, angle differences)

2. Linearization/convexification points.
▶ Linear: LPAC [Coffrin and Hentenryck, 2014], IV-Flow

[O’Neill et al., 2012; Castillo et al., 2016]

▶ Convex: SOC [Jabr, 2007], QPAC [Coffrin, H. Hijazi,
et al., 2015], Our work!

For a comprehensive review, [Molzahn et al., 2019].
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AC-OPF Reformulation

Reformulating the AC-OPF as a Difference-of-Convex-Functions Program

min
x

f (x)

s.t. Ax = b,

gi (x) ≤ 0, i = 1, . . . ,m2

x P Rn

=⇒

min
x

f (x)

s.t. Ax = b,

ĝi (x)− ǧi (x) ≤ 0, i = 1, . . . ,m2,

x P Rn,

where ĝ (x), and ǧ (x) are convex functions.
▶ The reformulated problem is still nonconvex due to ǧ (x).
▶ Convexify using a first-order Taylor series approximation [Yuille et al., 2003; Lipp et al., 2016].

min
x

f (x)

s.t. Ax = b,

ĝ (x)− ǧ (x̃)−∇ǧ (x̃)⊤ (x − x̃) ≤ 0,

x P Rn.
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The QCAC Approximation

▶ A feasible convexification point, x̃, renders an inner convex approximation of the original
problem.

▶ What if the convexification point, x̃, is not feasible?

min
x,s

f (x) + λs

s.t. Ax = b,

ĝ (x)− ǧ (x̃)−∇ǧ (x̃)⊤ (x − x̃) ≤ s,
x P Rn, s P R≥0,

where λ is a penalty term and s is a nonnegative slack variable.
▶ Note that no further assumptions are made to convexify the problem!
▶ Next, how can we predict good convexification points?

We can leverage solutions of historical instances using End-to-end learning.
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End-to-end learning

▶ Learning the mapping from the input
parameters of an optimization problem to its
solution.

▶ Given dataset {(xℓ, y∗
ℓ )}ℓPL, where y∗

ℓ denotes
a solution to the optimization problem for the
input xℓ.

▶ In the context of the AC-OPF: the input is the
nodal demand vector and the output
corresponds to the rectangular coordinates of
the nodal voltages at the solution.

▶ Main challenge: Enforce constraints on the
predictions!
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Enforcing constraints in neural networks

Soft methods
▶ Penalizing constraint violations

▶ Augmented loss function
▶ PINNs [Nellikkath et al., 2022]
▶ Sensitivity-informed [Singh et al., 2022]

▶ Augmented Lagrangian methods
▶ ALM [Fioretto et al., 2020]

Hard methods
▶ Implicit layers [Amos et al., 2017]

▶ Postprocessing [Zamzam et al., 2020; Li et al.,
2022; Pan et al., 2023]

▶ Self-supervised [Donti et al., 2021; Chen et al.,
2023]
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What constraints do we want to enforce?

The relationship between current injections and nodal voltages, known as Ohm’s law, is linear:[
i re

i im
]
=

[
G −B
B G

] [
v re

v im

]
.

▶ However, some of the current injections, the ones with generation and/or demand, are
unknown before solving the problem.

▶ There is a subset of nodes whose current injections are known a priori and equal to zero.
Such nodes are called zero-injection nodes.

▶ This talk: A hard method to enforce Ohm’s law of zero-injection nodes.
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Zero-injection buses

Buses (nodes) without generation or demand.
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Enforcing hard linear equality constraints

Can we enforce hard linear equality constraints using only an explicit layer?

▶ Explicit layers in feedforward NNs can
be expressed as[

v̂ re

v̂ im

]
= σ

(
W

[
ṽ re

ṽ im

]
+ b

)
,

where σ(·) denotes the nonlinear
activation function.

▶ Goal: Find σ(·), W , and b of the
projection layer such that a set of
linear equalities is satisfied during
training and inference.
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ṽ1

ṽn

...

v̂1

v̂n

...

Input layer
(pd,qd)

Hidden layers Output
layer
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Projecting predicted variables
Orthogonal projection of the predicted variables (v̂ re, v̂ im) onto

Yz

[
v re

v im

]
= 0,

where Yz =

[
Gz −Bz

Bz Gz

]
.

ṽ4

Yzv = 0
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Orthogonal projection of predicted voltages, ṽ , onto the nullspace of Yz .
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Determining weights and biases

The orthogonal projection onto a linear set of equalities can be formulated as a quadratic
problem

(v̂ re, v̂ im) P argmin
vre,v im

∥ṽ re − v re∥2
2 + ∥ṽ im − v im∥2

2

s.t. Yz

[
v re

v im

]
= 0.

Its closed-form solution is given by [
v̂ re

v̂ im

]
= A∗

[
ṽ re

ṽ im

]
,

where A∗ = I− Y⊤
z

(
YzY⊤

z

)−1
Yz .
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Determining weights and biases

▶ The closed-form solution can be represented as an explicit layer[
v̂ re

v̂ im

]
= A∗

[
ṽ re

ṽ im

]
⇐⇒

[
v̂ re

v̂ im

]
= σ

(
W

[
ṽ re

ṽ im

]
+ b

)
,

where σ(·) is a linear activation function, W = A∗, and b = 0.

▶ The matrix A∗ = I− Y⊤
z

(
YzY⊤

z

)−1
Yz , which corresponds to the weights of the

projection layer, only depends on the topology of the network and is independent of the
operating conditions. Hence, A∗ is only computed once for training and inference.
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Numerical results

▶ Congested condition of the IEEE 118-bus system from the PGLib [Babaeinejadsarookolaee
et al., 2021].

▶ 100 samples for random active and reactive power demands, ±40% and ±15% from the
base case, respectively.

Table: Optimality gap comparison

Model
Optimality gap (%)

Median Min Max

QCAC approximation 1.4824 0.006 12.0822

SOC relaxation 25.2628 10.5189 32.574

SDP relaxation 10.0873 3.9027 15.1559
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What about solution time?
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One order of magnitude faster and more accurate than the SDP relaxation!
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Even more important, what about distance to feasibility?
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And significantly closer to being feasible!
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Generation dispatch correlation

Table: Correlation coefficient comparison

Model
Correlation coefficient

Active power Reactive power

QCAC approximation 0.9949 0.8943

SOC relaxation 0.8605 0.6101

SDP relaxation 0.9607 0.5601

▶ Better correlation in generation dispatch makes the model more suitable for applications
sensitive to active and reactive power generation.

▶ For instance, unit commitment and optimal reactive power dispatch.
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