
1

Machine Learning for Combinatorial and Global
Optimization

Can Li

Davidson School of Chemical Engineering, Purdue University

PSE seminar

2

Collaborators

A. Prouvost M. Gasse D. Chételat

J. Dumouchelle L. Scavuzzo A. Lodi

3

Motivation
It is common to repeatedly solve similar combinatorial
optimization problems in practice.

▶ Power producers repeatedly solve unit commitment (UC) problems
to meet power demand at minimum market cost. Xavier et al., 2021

Use machine learning to make decisions when solving similar
optimization problems.

3

Motivation
It is common to repeatedly solve similar combinatorial
optimization problems in practice.

▶ Power producers repeatedly solve unit commitment (UC) problems
to meet power demand at minimum market cost. Xavier et al., 2021

Use machine learning to make decisions when solving similar
optimization problems.

3

Motivation
It is common to repeatedly solve similar combinatorial
optimization problems in practice.

▶ Power producers repeatedly solve unit commitment (UC) problems
to meet power demand at minimum market cost. Xavier et al., 2021

Use machine learning to make decisions when solving similar
optimization problems.

4

End to end learning1

Train the machine learning model to output solutions directly
from the input instance

▶ W. Chen et al. (2022). Learning optimization proxies for large-scale
security-constrained economic dispatch.

▶ E. Khalil et al. (2017). Learning combinatorial optimization
algorithms over graphs.

1Y. Bengio et al. (2021). Machine learning for combinatorial optimization: a
methodological tour d’horizon.

4

End to end learning1

Train the machine learning model to output solutions directly
from the input instance

▶ W. Chen et al. (2022). Learning optimization proxies for large-scale
security-constrained economic dispatch.

▶ E. Khalil et al. (2017). Learning combinatorial optimization
algorithms over graphs.

1Y. Bengio et al. (2021). Machine learning for combinatorial optimization: a
methodological tour d’horizon.

5

Learning to configure algorithms

Machine learning can provide a parametrization of the
algorithm

▶ I. Mitrai et al. (2022). Learning to Initialize Generalized Benders
Decomposition.

▶ P. Bonami et al. (2022). A classifier to decide on the linearization of
mixed-integer quadratic problems in CPLEX.

▶ M. Kruber et al. (2017). Learning when to use a decomposition.

5

Learning to configure algorithms

Machine learning can provide a parametrization of the
algorithm

▶ I. Mitrai et al. (2022). Learning to Initialize Generalized Benders
Decomposition.

▶ P. Bonami et al. (2022). A classifier to decide on the linearization of
mixed-integer quadratic problems in CPLEX.

▶ M. Kruber et al. (2017). Learning when to use a decomposition.

6

Machine learning alongside optimization algorithms
Calling an ML method to make decisions within an
optimization algorithm

▶ S. Zeng et al. (2022). A reinforcement learning approach to
parameter selection for distributed optimal power flow.

▶ M. Gasse et al. (2019b). Exact combinatorial optimization with
graph convolutional neural networks.

6

Machine learning alongside optimization algorithms
Calling an ML method to make decisions within an
optimization algorithm

▶ S. Zeng et al. (2022). A reinforcement learning approach to
parameter selection for distributed optimal power flow.

▶ M. Gasse et al. (2019b). Exact combinatorial optimization with
graph convolutional neural networks.

Machine Learning for Combinatorial Optimization

7

8

Mixed-Integer Linear Program (MILP)

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

▶ c P Rn the objective coefficients
▶ A P Rm×n the constraint coefficient matrix
▶ b P Rm the constraint right-hand-sides
▶ l, u P Rn the lower and upper variable bounds
▶ p ≤ n integer variables

NP-hard problem.

9

Linear Program (LP) relaxation

10

Branch-and-Bound

Split the LP recursively over a non-integral variable, i.e. ∃i ≤ p | x⋆
i ̸P Z

xi ≤ ⌊x⋆
i ⌋ ∨ xi ≥ ⌈x⋆

i ⌉.

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:
▶ L = U (optimality certificate)
▶ L = ∞ (infeasibility certificate)
▶ L - U < threshold (early stopping)

10

Branch-and-Bound

Split the LP recursively over a non-integral variable, i.e. ∃i ≤ p | x⋆
i ̸P Z

xi ≤ ⌊x⋆
i ⌋ ∨ xi ≥ ⌈x⋆

i ⌉.

Lower bound (L): minimal among leaf nodes.
Upper bound (U): minimal among leaf nodes with integral solution.

Stopping criterion:
▶ L = U (optimality certificate)
▶ L = ∞ (infeasibility certificate)
▶ L - U < threshold (early stopping)

11

Branch-and-Bound

12

Branch-and-Bound

13

Branch-and-Bound

14

Branch-and-Bound

Decision task: which node and variable to select for branching?

14

Branch-and-Bound

Decision task: which node and variable to select for branching?

15

Primal heuristics (generic search routines) might run at the each node.

Decision task: which heuristics to run? When? (heuristics are costly)

T. Berthold (2006). Primal heuristics for mixed integer programs.

15

Primal heuristics (generic search routines) might run at the each node.

Decision task: which heuristics to run? When? (heuristics are costly)

T. Berthold (2006). Primal heuristics for mixed integer programs.

16

Cuts can be added to the sub-MILPs to tighten the bounds.
(Branch-and-cut)

Decision task: which cuts to add to the LP ? Not all cuts are good, some
are redundant. Adding too many cuts can lead numerical instabilities.

16

Cuts can be added to the sub-MILPs to tighten the bounds.
(Branch-and-cut)

Decision task: which cuts to add to the LP ? Not all cuts are good, some
are redundant. Adding too many cuts can lead numerical instabilities.

16

Cuts can be added to the sub-MILPs to tighten the bounds.
(Branch-and-cut)

Decision task: which cuts to add to the LP ? Not all cuts are good, some
are redundant. Adding too many cuts can lead numerical instabilities.

17

Preprocessing routines can be run before the solving starts (usually
several, sequentially), to simplify and / or tighten the problem
formulation.

Decision task: which routines to run? How many times?

T. Achterberg (2004). SCIP - A Framework to Integrate Constraint and Mixed Integer
Programming.

17

Preprocessing routines can be run before the solving starts (usually
several, sequentially), to simplify and / or tighten the problem
formulation.

Decision task: which routines to run? How many times?

T. Achterberg (2004). SCIP - A Framework to Integrate Constraint and Mixed Integer
Programming.

18

Solver Design: a Complex Control Problem

Many intertwined decisions:
▶ node selection
▶ variable selection
▶ cutting planes
▶ primal heuristics
▶ preprocessing
▶ simplex initialization
▶ . . .

Many evaluation metrics:
▶ B&B tree size
▶ solving time: reach U=L fast
▶ primal-dual integral: U - L ↘

fast
▶ dual integral: L ↗ fast
▶ primal integral: U ↘ fast

State-of-the-art solvers: expert rules
+ benchmarks.

18

Solver Design: a Complex Control Problem

Many intertwined decisions:
▶ node selection
▶ variable selection
▶ cutting planes
▶ primal heuristics
▶ preprocessing
▶ simplex initialization
▶ . . .

Many evaluation metrics:
▶ B&B tree size
▶ solving time: reach U=L fast
▶ primal-dual integral: U - L ↘

fast
▶ dual integral: L ↗ fast
▶ primal integral: U ↘ fast

State-of-the-art solvers: expert rules
+ benchmarks.

18

Solver Design: a Complex Control Problem

Many intertwined decisions:
▶ node selection
▶ variable selection
▶ cutting planes
▶ primal heuristics
▶ preprocessing
▶ simplex initialization
▶ . . .

Many evaluation metrics:
▶ B&B tree size
▶ solving time: reach U=L fast
▶ primal-dual integral: U - L ↘

fast
▶ dual integral: L ↗ fast
▶ primal integral: U ↘ fast

State-of-the-art solvers: expert rules
+ benchmarks.

19

Learning to branch ?

Not a new idea, early attempts in the 2000’s [Achterberg, 2007].

Increased interest in recent years.

Imitation Learning (IL), approximate of strong branching, fast
▶ [E. B. Khalil, Le Bodic, et al., 2016]

▶ [Hansknecht et al., 2018]

▶ [Balcan et al., 2018]

▶ [Gasse et al., 2019a]

▶ [Gupta et al., 2020]

▶ [Nair et al., 2020]

Reinforcement learning (RL), learn new rules from scratch
▶ [Sun et al., 2020]

▶ [Etheve et al., 2020]

19

Learning to branch ?

Not a new idea, early attempts in the 2000’s [Achterberg, 2007].

Increased interest in recent years.

Imitation Learning (IL), approximate of strong branching, fast
▶ [E. B. Khalil, Le Bodic, et al., 2016]

▶ [Hansknecht et al., 2018]

▶ [Balcan et al., 2018]

▶ [Gasse et al., 2019a]

▶ [Gupta et al., 2020]

▶ [Nair et al., 2020]

Reinforcement learning (RL), learn new rules from scratch
▶ [Sun et al., 2020]

▶ [Etheve et al., 2020]

19

Learning to branch ?

Not a new idea, early attempts in the 2000’s [Achterberg, 2007].

Increased interest in recent years.

Imitation Learning (IL), approximate of strong branching, fast
▶ [E. B. Khalil, Le Bodic, et al., 2016]

▶ [Hansknecht et al., 2018]

▶ [Balcan et al., 2018]

▶ [Gasse et al., 2019a]

▶ [Gupta et al., 2020]

▶ [Nair et al., 2020]

Reinforcement learning (RL), learn new rules from scratch
▶ [Sun et al., 2020]

▶ [Etheve et al., 2020]

20

Imitation learning

Full Strong Branching (FSB): testing which of the candidate variable gives the
best improvement to the objective function before actually branching on them.
good branching rule, but expensive.

Can we learn a fast, good-enough
approximation ?

Behavioural cloning
▶ collect D = {(s, a⋆), . . . } from the expert agent (FSB)
▶ estimate π⋆(a | s) from D
+ no reward function, supervised learning, well-behaved
− will never surpass the expert...

Implementation with the open-source solver SCIP2

Not a new idea
▶ [Alvarez et al., 2017] predict SB scores, XTrees model
▶ [E. B. Khalil, Le Bodic, et al., 2016] predict SB rankings, SVMrank model
▶ [Hansknecht et al., 2018] do the same, λ-MART model

2A. Gleixner et al. (July 2018). The SCIP Optimization Suite 6.

20

Imitation learning

Full Strong Branching (FSB): testing which of the candidate variable gives the
best improvement to the objective function before actually branching on them.
good branching rule, but expensive. Can we learn a fast, good-enough
approximation ?

Behavioural cloning
▶ collect D = {(s, a⋆), . . . } from the expert agent (FSB)
▶ estimate π⋆(a | s) from D
+ no reward function, supervised learning, well-behaved
− will never surpass the expert...

Implementation with the open-source solver SCIP2

Not a new idea
▶ [Alvarez et al., 2017] predict SB scores, XTrees model
▶ [E. B. Khalil, Le Bodic, et al., 2016] predict SB rankings, SVMrank model
▶ [Hansknecht et al., 2018] do the same, λ-MART model

2A. Gleixner et al. (July 2018). The SCIP Optimization Suite 6.

20

Imitation learning

Full Strong Branching (FSB): testing which of the candidate variable gives the
best improvement to the objective function before actually branching on them.
good branching rule, but expensive. Can we learn a fast, good-enough
approximation ?

Behavioural cloning
▶ collect D = {(s, a⋆), . . . } from the expert agent (FSB)
▶ estimate π⋆(a | s) from D
+ no reward function, supervised learning, well-behaved
− will never surpass the expert...

Implementation with the open-source solver SCIP2

Not a new idea
▶ [Alvarez et al., 2017] predict SB scores, XTrees model
▶ [E. B. Khalil, Le Bodic, et al., 2016] predict SB rankings, SVMrank model
▶ [Hansknecht et al., 2018] do the same, λ-MART model

2A. Gleixner et al. (July 2018). The SCIP Optimization Suite 6.

20

Imitation learning

Full Strong Branching (FSB): testing which of the candidate variable gives the
best improvement to the objective function before actually branching on them.
good branching rule, but expensive. Can we learn a fast, good-enough
approximation ?

Behavioural cloning
▶ collect D = {(s, a⋆), . . . } from the expert agent (FSB)
▶ estimate π⋆(a | s) from D
+ no reward function, supervised learning, well-behaved
− will never surpass the expert...

Implementation with the open-source solver SCIP2

Not a new idea
▶ [Alvarez et al., 2017] predict SB scores, XTrees model
▶ [E. B. Khalil, Le Bodic, et al., 2016] predict SB rankings, SVMrank model
▶ [Hansknecht et al., 2018] do the same, λ-MART model

2A. Gleixner et al. (July 2018). The SCIP Optimization Suite 6.

21

Node state encoding

Graph Convolutional Neural Network

Natural representation : variable / constraint bipartite graph

argmin
x

c⊤x

subject to Ax ≤ b,
l ≤ x ≤ u,

x P Zp × Rn−p.

v0

v1

v2

c0

c1

e0,0

e2,0

e1,0

e2,1

▶ vi : variable features (type, coef., bounds, LP solution. . .)
▶ cj : constraint features (right-hand-side, LP slack. . .)
▶ ei,j : non-zero coefficients in A

D. Selsam et al. (2019). Learning a SAT Solver from Single-Bit Supervision.

22

Branching Policy as a GCNN Model
Neighbourhood-based updates:
C-side convolution ci ← fC

(
ci ,

∑
jPNi

gC(ci , vj , ei,j)
)

V-side convolution vj ← fV
(
vj ,

∑
iPNj

gV(ci , vj , ei,j)
)

v0

v1

v2

0.2

0.1

0.7

π(a | s)

c0

c1

e0,0

e2,0

e1,0

e2,1

s

Natural model choice for graph-structured data
▶ permutation-invariance
▶ benefits from sparsity

T. N. Kipf et al. (2016). Semi-Supervised Classification with Graph Convolutional
Networks.

22

Branching Policy as a GCNN Model
Neighbourhood-based updates:
C-side convolution ci ← fC

(
ci ,

∑
jPNi

gC(ci , vj , ei,j)
)

V-side convolution vj ← fV
(
vj ,

∑
iPNj

gV(ci , vj , ei,j)
)

v0

v1

v2

0.2

0.1

0.7

π(a | s)

c0

c1

e0,0

e2,0

e1,0

e2,1

s

Natural model choice for graph-structured data
▶ permutation-invariance
▶ benefits from sparsity

T. N. Kipf et al. (2016). Semi-Supervised Classification with Graph Convolutional
Networks.

23

Minimum set covering3

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 17.30 0 / 100 17 411.34 0 / 90 171 3600.00 0 / 0 n/a
RPB 8.98 0 / 100 54 60.07 0 / 100 1741 1677.02 4 / 65 47 299

XTrees 9.28 0 / 100 187 92.47 0 / 100 2187 2869.21 0 / 35 59 013
SVMrank 8.10 1 / 100 165 73.58 0 / 100 1915 2389.92 0 / 47 42 120
λ-MART 7.19 14 / 100 167 59.98 0 / 100 1925 2165.96 0 / 54 45 319
GCNN 6.59 85 / 100 134 42.48 100 / 100 1450 1489.91 66 / 70 29 981

3 problem sizes
▶ 500 rows, 1000 cols (easy), training distribution
▶ 1000 rows, 1000 cols (medium)
▶ 2000 rows, 1000 cols (hard)

Pays off: better than SCIP’s default in terms of solving time.
Generalizes to harder problems !

Similar results on: combinatorial auctions, capacitated facility location,
maximum independent set.

3E. Balas et al. (1980). Set covering algorithms using cutting planes, heuristics,
and subgradient optimization: a computational study.

23

Minimum set covering3

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 17.30 0 / 100 17 411.34 0 / 90 171 3600.00 0 / 0 n/a
RPB 8.98 0 / 100 54 60.07 0 / 100 1741 1677.02 4 / 65 47 299

XTrees 9.28 0 / 100 187 92.47 0 / 100 2187 2869.21 0 / 35 59 013
SVMrank 8.10 1 / 100 165 73.58 0 / 100 1915 2389.92 0 / 47 42 120
λ-MART 7.19 14 / 100 167 59.98 0 / 100 1925 2165.96 0 / 54 45 319
GCNN 6.59 85 / 100 134 42.48 100 / 100 1450 1489.91 66 / 70 29 981

3 problem sizes
▶ 500 rows, 1000 cols (easy), training distribution
▶ 1000 rows, 1000 cols (medium)
▶ 2000 rows, 1000 cols (hard)

Pays off: better than SCIP’s default in terms of solving time.

Generalizes to harder problems !

Similar results on: combinatorial auctions, capacitated facility location,
maximum independent set.

3E. Balas et al. (1980). Set covering algorithms using cutting planes, heuristics,
and subgradient optimization: a computational study.

23

Minimum set covering3

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 17.30 0 / 100 17 411.34 0 / 90 171 3600.00 0 / 0 n/a
RPB 8.98 0 / 100 54 60.07 0 / 100 1741 1677.02 4 / 65 47 299

XTrees 9.28 0 / 100 187 92.47 0 / 100 2187 2869.21 0 / 35 59 013
SVMrank 8.10 1 / 100 165 73.58 0 / 100 1915 2389.92 0 / 47 42 120
λ-MART 7.19 14 / 100 167 59.98 0 / 100 1925 2165.96 0 / 54 45 319
GCNN 6.59 85 / 100 134 42.48 100 / 100 1450 1489.91 66 / 70 29 981

3 problem sizes
▶ 500 rows, 1000 cols (easy), training distribution
▶ 1000 rows, 1000 cols (medium)
▶ 2000 rows, 1000 cols (hard)

Pays off: better than SCIP’s default in terms of solving time.
Generalizes to harder problems !

Similar results on: combinatorial auctions, capacitated facility location,
maximum independent set.

3E. Balas et al. (1980). Set covering algorithms using cutting planes, heuristics,
and subgradient optimization: a computational study.

23

Minimum set covering3

Easy Medium Hard
Model Time Wins Nodes Time Wins Nodes Time Wins Nodes
FSB 17.30 0 / 100 17 411.34 0 / 90 171 3600.00 0 / 0 n/a
RPB 8.98 0 / 100 54 60.07 0 / 100 1741 1677.02 4 / 65 47 299

XTrees 9.28 0 / 100 187 92.47 0 / 100 2187 2869.21 0 / 35 59 013
SVMrank 8.10 1 / 100 165 73.58 0 / 100 1915 2389.92 0 / 47 42 120
λ-MART 7.19 14 / 100 167 59.98 0 / 100 1925 2165.96 0 / 54 45 319
GCNN 6.59 85 / 100 134 42.48 100 / 100 1450 1489.91 66 / 70 29 981

3 problem sizes
▶ 500 rows, 1000 cols (easy), training distribution
▶ 1000 rows, 1000 cols (medium)
▶ 2000 rows, 1000 cols (hard)

Pays off: better than SCIP’s default in terms of solving time.
Generalizes to harder problems !

Similar results on: combinatorial auctions, capacitated facility location,
maximum independent set.

3E. Balas et al. (1980). Set covering algorithms using cutting planes, heuristics,
and subgradient optimization: a computational study.

24

ML4CO: a growing field

Node selection
▶ [He et al., 2014]
▶ [Song, Lanka, Zhao, et al., 2018]

Variable selection
▶ [E. B. Khalil, Le Bodic, et al.,

2016]
▶ [Hansknecht et al., 2018]
▶ [Balcan et al., 2018]
▶ [Gasse et al., 2019a]
▶ [Gupta et al., 2020]
▶ [Nair et al., 2020]

Cutting planes selection
▶ [Baltean-Lugojan et al., 2018]
▶ [Tang et al., 2019]

Primal heuristic selection
▶ [E. B. Khalil, Dilkina, et al.,

2017]
▶ [Hendel et al., 2018]

Formulation selection
▶ [Bonami et al., 2018]

Neighborhood search heuristics
▶ [Ding et al., 2019]
▶ [Song, Lanka, Yue, et al., 2020]
▶ [Addanki et al., 2020]

Diving heuristics
▶ [Song, Lanka, Zhao, et al., 2018]
▶ [Yilmaz et al., 2020]
▶ [Nair et al., 2020]

Ecole: A Gym-like Library for Machine Learning
in Combinatorial Optimization Solvers

25

26

Why Ecole ?

Poor reproducibility in the field
▶ closed-source solvers
▶ problem benchmarks
▶ evaluation metrics

High bar of entry for newcomers
▶ low-level C/C++ code
▶ highly technical APIs even for OR experts

Gap between the ML and OR communities
▶ amputated solvers raise criticism in the OR community
▶ OR experts employ basic ML models

=⇒ need for a standard, open platform based on a state-of-the-art
solver

Remove technical obstacles, so
that we can focus on the interest-
ing challenges !

A. Prouvost et al. (2020). Ecole: A Gym-like Library for Machine Learning in
Combinatorial Optimization Solvers.

26

Why Ecole ?

Poor reproducibility in the field
▶ closed-source solvers
▶ problem benchmarks
▶ evaluation metrics

High bar of entry for newcomers
▶ low-level C/C++ code
▶ highly technical APIs even for OR experts

Gap between the ML and OR communities
▶ amputated solvers raise criticism in the OR community
▶ OR experts employ basic ML models

=⇒ need for a standard, open platform based on a state-of-the-art
solver

Remove technical obstacles, so
that we can focus on the interest-
ing challenges !

A. Prouvost et al. (2020). Ecole: A Gym-like Library for Machine Learning in
Combinatorial Optimization Solvers.

26

Why Ecole ?

Poor reproducibility in the field
▶ closed-source solvers
▶ problem benchmarks
▶ evaluation metrics

High bar of entry for newcomers
▶ low-level C/C++ code
▶ highly technical APIs even for OR experts

Gap between the ML and OR communities
▶ amputated solvers raise criticism in the OR community
▶ OR experts employ basic ML models

=⇒ need for a standard, open platform based on a state-of-the-art
solver

Remove technical obstacles, so
that we can focus on the interest-
ing challenges !

A. Prouvost et al. (2020). Ecole: A Gym-like Library for Machine Learning in
Combinatorial Optimization Solvers.

26

Why Ecole ?

Poor reproducibility in the field
▶ closed-source solvers
▶ problem benchmarks
▶ evaluation metrics

High bar of entry for newcomers
▶ low-level C/C++ code
▶ highly technical APIs even for OR experts

Gap between the ML and OR communities
▶ amputated solvers raise criticism in the OR community
▶ OR experts employ basic ML models

=⇒ need for a standard, open platform based on a state-of-the-art
solver

Remove technical obstacles, so
that we can focus on the interest-
ing challenges !

A. Prouvost et al. (2020). Ecole: A Gym-like Library for Machine Learning in
Combinatorial Optimization Solvers.

27

The PO-MDP Formulation
Sequential control problem = Markov decision process

Agent

Environment

Action a P AState s P S

State = state of the branch-and-bound process (solver)

Actions = variables, nodes, primal heuristics, cuts, preprocessing
routines to select
Episode = solving an instance to completion
Probability of a trajectory τ P (s0, . . . , sT)

τ ∼ pinit(s0)︸ ︷︷ ︸
initial state

∞∏
t=0

π(at |st)︸ ︷︷ ︸
next action

ptrans(st+1|at , st)︸ ︷︷ ︸
next state

Partially-obervable-MDP: state s P S → observation o P O

27

The PO-MDP Formulation
Sequential control problem = Markov decision process

Agent

Environment

Action a P AState s P S

State = state of the branch-and-bound process (solver)
Actions = variables, nodes, primal heuristics, cuts, preprocessing
routines to select
Episode = solving an instance to completion

Probability of a trajectory τ P (s0, . . . , sT)

τ ∼ pinit(s0)︸ ︷︷ ︸
initial state

∞∏
t=0

π(at |st)︸ ︷︷ ︸
next action

ptrans(st+1|at , st)︸ ︷︷ ︸
next state

Partially-obervable-MDP: state s P S → observation o P O

27

The PO-MDP Formulation
Sequential control problem = Markov decision process

Agent

Environment

Action a P AState s P S

State = state of the branch-and-bound process (solver)
Actions = variables, nodes, primal heuristics, cuts, preprocessing
routines to select
Episode = solving an instance to completion
Probability of a trajectory τ P (s0, . . . , sT)

τ ∼ pinit(s0)︸ ︷︷ ︸
initial state

∞∏
t=0

π(at |st)︸ ︷︷ ︸
next action

ptrans(st+1|at , st)︸ ︷︷ ︸
next state

Partially-obervable-MDP: state s P S → observation o P O

27

The PO-MDP Formulation
Sequential control problem = Markov decision process

Agent

Environment

Action a P AState s P S

State = state of the branch-and-bound process (solver)
Actions = variables, nodes, primal heuristics, cuts, preprocessing
routines to select
Episode = solving an instance to completion
Probability of a trajectory τ P (s0, . . . , sT)

τ ∼ pinit(s0)︸ ︷︷ ︸
initial state

∞∏
t=0

π(at |st)︸ ︷︷ ︸
next action

ptrans(st+1|at , st)︸ ︷︷ ︸
next state

Partially-obervable-MDP: state s P S → observation o P O

28

OpenAI Gym API

29

Ecole API

30

What’s in Ecole now ?

https://doc.ecole.ai

Environments:
▶ Solver configuration
▶ Branching (variable

selection)
▶ Primal Search (feas.

solutions)

Rewards:
▶ Solving Time
▶ NNodes (B&B tree size)
▶ LP Iterations
▶ Primal and dual integral

Observations:
▶ Hutter2011 [Hutter et al., 2011]
▶ Khalil2016 [E. B. Khalil, Le Bodic,

et al., 2016]
▶ Gasse2019 [Gasse et al., 2019a]
▶ Branching Scores (SB, Pseudocost)

Instance Generators:
▶ Set Covering [Balas et al., 1980]
▶ Comb. Auction [Leyton-Brown et al.,

2000]
▶ Facility Location [Cornuejols et al.,

1991]
▶ Independent Set [Bergman et al.,

2016]

https://doc.ecole.ai

Machine Learning for Global Optimization

31

32

Mixed-Integer Nonlinear Program (MINLP)

argmin
x

f (x)

subject to g(x) ≤ 0,
l ≤ x ≤ u,

x P Zp × Rn−p.

▶ f : Rn → R the objective function
▶ g : Rn → Rm the constraint coefficient matrix
▶ f , g can be nonconvex
▶ l, u P Rn the lower and upper variable bounds
▶ p ≤ n integer variables

33

Wide applications of global optimization

Energy systems optimization
▶ AC optimal power flow
▶ Pooling problem

Chemical engineering
▶ Heat exchanger design
▶ Design of molecules

Systems biology
▶ Protein structure prediction
▶ Metabolic engineering

34

Convex relaxations for nonconvex functions
Convex function g(x) underestimate nonconvex function f (x)

Example: quadratic functions x⊤Qx , Q not p.s.d
▶ McCormick inequalities
▶ Reformulation linearization technique (RLT)
▶ Semidefinite programming (SDP)

34

Convex relaxations for nonconvex functions
Convex function g(x) underestimate nonconvex function f (x)

Example: quadratic functions x⊤Qx , Q not p.s.d
▶ McCormick inequalities
▶ Reformulation linearization technique (RLT)
▶ Semidefinite programming (SDP)

35

Spatial branch-and-bound

Need to perform spatial branching on the continuous variable to obtain
global optimality

36

Machine learning for global optimization

Spatial branching
▶ improve the standard spatial

branching rules [Ghaddar
et al., 2022]

Cut selection
▶ select sparse SDP cuts

[Baltean-Lugojan et al., 2019]

Initial formulation
▶ whether to linearize an MIQP or

not [Bonami et al., 2022]

Learning to select relaxations in a
branch and bound algorithm
▶ This talk.

36

Machine learning for global optimization

Spatial branching
▶ improve the standard spatial

branching rules [Ghaddar
et al., 2022]

Cut selection
▶ select sparse SDP cuts

[Baltean-Lugojan et al., 2019]

Initial formulation
▶ whether to linearize an MIQP or

not [Bonami et al., 2022]

Learning to select relaxations in a
branch and bound algorithm
▶ This talk.

36

Machine learning for global optimization

Spatial branching
▶ improve the standard spatial

branching rules [Ghaddar
et al., 2022]

Cut selection
▶ select sparse SDP cuts

[Baltean-Lugojan et al., 2019]

Initial formulation
▶ whether to linearize an MIQP or

not [Bonami et al., 2022]

Learning to select relaxations in a
branch and bound algorithm
▶ This talk.

36

Machine learning for global optimization

Spatial branching
▶ improve the standard spatial

branching rules [Ghaddar
et al., 2022]

Cut selection
▶ select sparse SDP cuts

[Baltean-Lugojan et al., 2019]

Initial formulation
▶ whether to linearize an MIQP or

not [Bonami et al., 2022]

Learning to select relaxations in a
branch and bound algorithm
▶ This talk.

37

Quadratic Unconstrained Binary Optimization(QUBO)

min x⊤Qx

x P {0, 1}n

A number of applications can be represented as QUBOs.
▶ Maxcut
▶ Quadratic Stable Set Problem
▶ Graph Coloring
▶ Partition Problem

Maxcut formulation
Given graph G = (V ,E) & matrix W P Sn

with wi,j ̸= 0 if (i , j) P E & 0 otherwise

f ∗ = max
xP{−1,+1}n

∑
(i,j)PE

wi,j

(1 − xixj
2

)

37

Quadratic Unconstrained Binary Optimization(QUBO)

min x⊤Qx

x P {0, 1}n

A number of applications can be represented as QUBOs.
▶ Maxcut
▶ Quadratic Stable Set Problem
▶ Graph Coloring
▶ Partition Problem

Maxcut formulation
Given graph G = (V ,E) & matrix W P Sn

with wi,j ̸= 0 if (i , j) P E & 0 otherwise

f ∗ = max
xP{−1,+1}n

∑
(i,j)PE

wi,j

(1 − xixj
2

)

38

Branch-and-bound Algorithm for QUBO

▶ In order to solve QUBO to global optimality, a branch-and-bound
algorithm is needed.

▶ Lower bound
Different relaxations can be used in the branch-and-bound algorithm

1. Linear Programming (LP)
2. Semidefinite programming (SDP)
3. Hybrid LP & SDP

▶ Upper bound
Heuristics like Goemans and Williamson (1995)

▶ We will focus on how to effectively use lower bound in this talk

38

Branch-and-bound Algorithm for QUBO

▶ In order to solve QUBO to global optimality, a branch-and-bound
algorithm is needed.

▶ Lower bound
Different relaxations can be used in the branch-and-bound algorithm

1. Linear Programming (LP)
2. Semidefinite programming (SDP)
3. Hybrid LP & SDP

▶ Upper bound
Heuristics like Goemans and Williamson (1995)

▶ We will focus on how to effectively use lower bound in this talk

38

Branch-and-bound Algorithm for QUBO

▶ In order to solve QUBO to global optimality, a branch-and-bound
algorithm is needed.

▶ Lower bound
Different relaxations can be used in the branch-and-bound algorithm

1. Linear Programming (LP)
2. Semidefinite programming (SDP)
3. Hybrid LP & SDP

▶ Upper bound
Heuristics like Goemans and Williamson (1995)

▶ We will focus on how to effectively use lower bound in this talk

38

Branch-and-bound Algorithm for QUBO

▶ In order to solve QUBO to global optimality, a branch-and-bound
algorithm is needed.

▶ Lower bound
Different relaxations can be used in the branch-and-bound algorithm

1. Linear Programming (LP)
2. Semidefinite programming (SDP)
3. Hybrid LP & SDP

▶ Upper bound
Heuristics like Goemans and Williamson (1995)

▶ We will focus on how to effectively use lower bound in this talk

39

LP relaxations

Let X P Sn represents xx⊤. The QUBO can be relaxed as

min
X ,xP[0,1]

< Q,X >

s.t. valid linear inequalities

▶ McCormick inequalities

Xij ≥ 0, Xij ≥ xi + xj − 1, Xij ≤ xi ∀i , j

▶ Odd cycle inequalities derived from the CUT polytope, e.g., triangle
inequalities.

χij + χik + χjk ≤ 2
χij − χik − χjk ≤ 0
−χij + χik − χjk ≤ 0
−χij − χik + χjk ≤ 0

 for all distinct i , j , k P V

where χe P {0, 1}|E | whether edge e is in the cut. χij = xi + xj − Xij − Xji

39

LP relaxations

Let X P Sn represents xx⊤. The QUBO can be relaxed as

min
X ,xP[0,1]

< Q,X >

s.t. valid linear inequalities

▶ McCormick inequalities

Xij ≥ 0, Xij ≥ xi + xj − 1, Xij ≤ xi ∀i , j

▶ Odd cycle inequalities derived from the CUT polytope, e.g., triangle
inequalities.

χij + χik + χjk ≤ 2
χij − χik − χjk ≤ 0
−χij + χik − χjk ≤ 0
−χij − χik + χjk ≤ 0

 for all distinct i , j , k P V

where χe P {0, 1}|E | whether edge e is in the cut. χij = xi + xj − Xij − Xji

39

LP relaxations

Let X P Sn represents xx⊤. The QUBO can be relaxed as

min
X ,xP[0,1]

< Q,X >

s.t. valid linear inequalities

▶ McCormick inequalities

Xij ≥ 0, Xij ≥ xi + xj − 1, Xij ≤ xi ∀i , j

▶ Odd cycle inequalities derived from the CUT polytope, e.g., triangle
inequalities.

χij + χik + χjk ≤ 2
χij − χik − χjk ≤ 0
−χij + χik − χjk ≤ 0
−χij − χik + χjk ≤ 0

 for all distinct i , j , k P V

where χe P {0, 1}|E | whether edge e is in the cut. χij = xi + xj − Xij − Xji

40

SDP relaxations

X = xx⊤
relax
=⇒ X ⪰ xx⊤

Schur complement⇐⇒
[
1 x⊤

x X

]
⪰ 0

▶ Basic SDP relaxation of QUBO can be solved by interior point
solvers efficiently

▶ For large problems, basic SDP relaxation bounds improve slowly in
the branch and bound algorithm.

SDP + linear relaxations
▶ Stronger than SDP or linear relaxations alone. Reduce the number

of nodes in branch-and-bound.
▶ State-of-the-art QUBO solvers, e.g., BiqMac, BiqCrunch, use SDP

+ polyhedral relaxations.
▶ Stronger but also more expensive to solve.

40

SDP relaxations

X = xx⊤
relax
=⇒ X ⪰ xx⊤

Schur complement⇐⇒
[
1 x⊤

x X

]
⪰ 0

▶ Basic SDP relaxation of QUBO can be solved by interior point
solvers efficiently

▶ For large problems, basic SDP relaxation bounds improve slowly in
the branch and bound algorithm.

SDP + linear relaxations
▶ Stronger than SDP or linear relaxations alone. Reduce the number

of nodes in branch-and-bound.
▶ State-of-the-art QUBO solvers, e.g., BiqMac, BiqCrunch, use SDP

+ polyhedral relaxations.
▶ Stronger but also more expensive to solve.

40

SDP relaxations

X = xx⊤
relax
=⇒ X ⪰ xx⊤

Schur complement⇐⇒
[
1 x⊤

x X

]
⪰ 0

▶ Basic SDP relaxation of QUBO can be solved by interior point
solvers efficiently

▶ For large problems, basic SDP relaxation bounds improve slowly in
the branch and bound algorithm.

SDP + linear relaxations
▶ Stronger than SDP or linear relaxations alone. Reduce the number

of nodes in branch-and-bound.
▶ State-of-the-art QUBO solvers, e.g., BiqMac, BiqCrunch, use SDP

+ polyhedral relaxations.
▶ Stronger but also more expensive to solve.

41

Motivations of our work

Trade-offs in applying different relaxations
▶ LP relaxation

▶ easy to solve; weak bounds
▶ Enumerate more nodes in the same amount of time

▶ SDP + LP relaxations
▶ stronger bounds; expensive to solve
▶ Higher chance of fathoming a node.

Questions we aim to address
▶ Which relaxation should we use at each node of the

branch-and-bound algorithm?
▶ Is it worth solving a more expensive relaxation (SDP-based

relaxation) at each node?

41

Motivations of our work

Trade-offs in applying different relaxations
▶ LP relaxation

▶ easy to solve; weak bounds
▶ Enumerate more nodes in the same amount of time

▶ SDP + LP relaxations
▶ stronger bounds; expensive to solve
▶ Higher chance of fathoming a node.

Questions we aim to address
▶ Which relaxation should we use at each node of the

branch-and-bound algorithm?
▶ Is it worth solving a more expensive relaxation (SDP-based

relaxation) at each node?

42

Hybrid bounding scheme

We adopt the framework of Furini and Traversi (2013).
▶ By default, we solve the LP relaxation of the problem at each node.
▶ The SDP relaxation is only solved if we believe a node is likely to be

pruned by SDP bound.

LP

LP LP

LP LP

Solve SDP relaxation

43

Simple setting

McCormick relaxation v.s. McCormick relaxation + SDP
▶ At each node, we solve the LP relaxation with McCormick

inequalities.

(LP) min
X ,xP[0,1]

< Q,X >

s.t. Xij ≥ 0, Xij ≥ xi + xj − 1, Xij ≤ xi ∀i , j

▶ The SDP relaxation is solved conditionally.

(SDP) min
X ,xP[0,1]

< Q,X >

s.t. Xij ≥ 0, Xij ≥ xi + xj − 1, Xij ≤ xi ∀i , j[
1 x⊤

x X

]
⪰ 0

44

Predicting SDP bound using Heuristic/Machine learning

▶ If we can predict whether the SDP bound can fathom a node
without solving an SDP using a heuristic/machine learning, the
computational time can be saved for the nodes that cannot be
fathomed.

▶ This work: learning to predict bounds

44

Predicting SDP bound using Heuristic/Machine learning

▶ If we can predict whether the SDP bound can fathom a node
without solving an SDP using a heuristic/machine learning, the
computational time can be saved for the nodes that cannot be
fathomed.

▶ This work: learning to predict bounds

45

A simple observation
▶ If a feasible solution of the SDP relaxation can be found that is

smaller than the incumbent solution, the SDP bound cannot fathom
and node. We can skip solving the SDP.

▶ How to quickly find a near optimal solution to the SDP?

46

QCP-based approach

▶ Suppose SDP is solved at a node with optimal solution x̄ , X̄ . We
solve the child nodes with x , X fixed to x̄ , X̄ except the ith row and
column.

min < Q,X >

Xij ≥ 0, Xij ≥ xi + xj − 1, Xij ≤ xj ∀j
0 ≤ xi ≤ 1

Xi,i X[i,1:i−1] xi X[i,i+1:]

X[1:i−1,i] X̄1:i−1,1:i−1 x̄1:i−1 X̄[1:i−1,i+1:]

xi x̄⊤
1:i−1 1 x̄⊤

i+1:
X[i+1:,i] X̄[i+1:,1:i−1] x̄i+1: X̄[i+1:,i+1:]

 ⪰ 0

▶ The SDP can be reformulated as a convex QCP by taking the Schur
complement.

46

QCP-based approach

▶ Suppose SDP is solved at a node with optimal solution x̄ , X̄ . We
solve the child nodes with x , X fixed to x̄ , X̄ except the ith row and
column.

min < Q,X >

Xij ≥ 0, Xij ≥ xi + xj − 1, Xij ≤ xj ∀j
0 ≤ xi ≤ 1

Xi,i X[i,1:i−1] xi X[i,i+1:]

X[1:i−1,i] X̄1:i−1,1:i−1 x̄1:i−1 X̄[1:i−1,i+1:]

xi x̄⊤
1:i−1 1 x̄⊤

i+1:
X[i+1:,i] X̄[i+1:,1:i−1] x̄i+1: X̄[i+1:,i+1:]

 ⪰ 0

▶ The SDP can be reformulated as a convex QCP by taking the Schur
complement.

47

QCP-based approach

min < Q,X >

Xij ≥ 0, Xij ≥ xi + xj − 1, Xij ≤ xj ∀j

0 ≤ xi ≤ 1
Xi,i X[i,1:i−1] xi X[i,i+1:]

X[1:i−1,i]
X̄1:i−1,1:i−1 x̄1:i−1 X̄[1:i−1,i+1:]

xi x̄⊤1:i−1 1 x̄⊤i+1:
X[i+1:,i] X̄[i+1:,1:i−1] x̄i+1: X̄[i+1:,i+1:]

 ⪰ 0

Equivalent to a convex QCP with O(n) variables and
constraints

Xi,i −

X[1:i−1,i]
xi

X[i+1:,i]

⊤

X̄−1

X[1:i−1,i]
xi

X[i+1:,i]

 ≥ 0

47

QCP-based approach

min < Q,X >

Xij ≥ 0, Xij ≥ xi + xj − 1, Xij ≤ xj ∀j

0 ≤ xi ≤ 1
Xi,i X[i,1:i−1] xi X[i,i+1:]

X[1:i−1,i]
X̄1:i−1,1:i−1 x̄1:i−1 X̄[1:i−1,i+1:]

xi x̄⊤1:i−1 1 x̄⊤i+1:
X[i+1:,i] X̄[i+1:,1:i−1] x̄i+1: X̄[i+1:,i+1:]

 ⪰ 0

Equivalent to a convex QCP with O(n) variables and
constraints

Xi,i −

X[1:i−1,i]
xi

X[i+1:,i]

⊤

X̄−1

X[1:i−1,i]
xi

X[i+1:,i]

 ≥ 0

48

Combine QCP with Machine learning

▶ If the QCP value is smaller than the incumbent solution, we can
safely skip the SDP solve.

▶ Can we be more aggressive in skipping the nodes?

Estimating the “true" SDP bounds using ML
▶ Idea: we can estimate the “suboptimality" of QCP solve from data
▶ If we have an accurate estimation of the suboptimality, we might skip the

SDP solve even if the QCP value is greater than the incumbent.

48

Combine QCP with Machine learning

▶ If the QCP value is smaller than the incumbent solution, we can
safely skip the SDP solve.

▶ Can we be more aggressive in skipping the nodes?

Estimating the “true" SDP bounds using ML
▶ Idea: we can estimate the “suboptimality" of QCP solve from data
▶ If we have an accurate estimation of the suboptimality, we might skip the

SDP solve even if the QCP value is greater than the incumbent.

49

Data collection

▶ SDP is solved at each node

▶ QCP is solved based on the SDP/QCP solves of its parent node
▶ napprox denotes the number of QCP approximations made
▶ For X 0,1,3, napprox = 2. For X 1,3 and X 0,1, napprox = 1
▶ we only consider napprox≤ 3

49

Data collection

▶ SDP is solved at each node
▶ QCP is solved based on the SDP/QCP solves of its parent node

▶ napprox denotes the number of QCP approximations made
▶ For X 0,1,3, napprox = 2. For X 1,3 and X 0,1, napprox = 1
▶ we only consider napprox≤ 3

49

Data collection

▶ SDP is solved at each node
▶ QCP is solved based on the SDP/QCP solves of its parent node
▶ napprox denotes the number of QCP approximations made

▶ For X 0,1,3, napprox = 2. For X 1,3 and X 0,1, napprox = 1
▶ we only consider napprox≤ 3

49

Data collection

▶ SDP is solved at each node
▶ QCP is solved based on the SDP/QCP solves of its parent node
▶ napprox denotes the number of QCP approximations made
▶ For X 0,1,3, napprox = 2. For X 1,3 and X 0,1, napprox = 1

▶ we only consider napprox≤ 3

49

Data collection

▶ SDP is solved at each node
▶ QCP is solved based on the SDP/QCP solves of its parent node
▶ napprox denotes the number of QCP approximations made
▶ For X 0,1,3, napprox = 2. For X 1,3 and X 0,1, napprox = 1
▶ we only consider napprox≤ 3

50

Data collection continued

▶ Since we can make false predictions, We branch one more time after
the node can be fathomed by SDP bound during data collection.

▶ The training data is collected on 36 maxcut instances of size 60 with
densities ranging from 10% to 90%.

51

Feature engineering

Table: Features for each QCP solved

obj_qcp - obj_fea QCP and incumbent solution difference
obj_fea - obj_sdp_root incumbent solution and root node SDP difference

depth node depth
napprox number of QCP approximations

geo_mean geometric mean of number of branches on 1 and 0
density density of the maxcut adjacency matrix

52

SVM classifier
▶ With the features, we predict whether a node can be fathomed by

SDP bound or not. (0/1 labels)
▶ We use SVC from scikit-learn that implements a Support Vector

Machine (SVM) classifier with radial basis function (rbf) kernel.

Table: Prediction statistics

Accuracy Precision Recall

SVM 93.58% 94.93% 95.15%

52

SVM classifier
▶ With the features, we predict whether a node can be fathomed by

SDP bound or not. (0/1 labels)
▶ We use SVC from scikit-learn that implements a Support Vector

Machine (SVM) classifier with radial basis function (rbf) kernel.

Table: Prediction statistics

Accuracy Precision Recall

SVM 93.58% 94.93% 95.15%

53

TPR v.s. FPR

▶ TPR (recall): true positive rate
nodes predicted to be fathomed by SDP that is true

#node that can be fathomed by SDP

▶ FPR: false positive rate
▶ We want to increase recall such that we do not miss many nodes

that can be fathomed by SDP bounds. Otherwise, more nodes will
be created and have to be solved.

54

TPR v.s. FPR

move the decision boundary to have higher recall

▶ Set the decision boundary threshold such that 8TPR − FPR is
maximized

55

Testing results

▶ Increasing the recall also decreases accuracy and precision

Table: Prediction statistics

Accuracy Precision Recall

SVM 93.58% 94.93% 95.15%
SVM with high recall 92.40% 90.30% 98.86%

56

Numerical results

▶ Average over 9 maxcut instances with densities 10%-90%
▶ The reduction in nodes and time can be different
▶ QCP SVM with high recall performs the best

Table: Node and time reduction compared with solving SDP at each node

QCP QCP SVM QCP SVM high recall

SDP solve reduction 19% 26% 28%
walltime reduction 16% 8% 20%

Convex Approximation for AC-OPF Using a
Feasibility-Enhanced Neural Network

57

58

AC Optimal Power Flow (AC-OPF)

▶ The AC-OPF (or some approximation thereof) is the cornerstone of
the operation and planning of power systems and is generally solved
multiple times a day by power system operators worldwide.

▶ Its goal is to determine the most economical production levels of
generating units to supply the demand while satisfying physical and
engineering constraints.
▶ Physical constraints model the nonconvex governing physical laws,

Ohm’s law and Kirchhoff law, known as power flow equations.
▶ Engineering constraints model voltage, angle difference,

transmission, and generation limits.

59

AC Optimal Power Flow (AC-OPF)

▶ The generating units and demands are distributed throughout a
network, which is composed of
▶ Nodes: Known as buses
▶ Edges: Representing mainly transmission lines
▶ The matrix encoding the network information is known as nodal

admittance matrix.
▶ Every node is characterized by a complex voltage and a complex net

power injection.
▶ Each generating unit and demand is connected to a certain node.
▶ In this talk, we consider that complex voltages are represented in

rectangular coordinates, which allows us to formulate the problem as
a nonconvex QCQP.

60

AC Optimal Power Flow Formulation

The AC-OPF can be formulated as a nonconvex quadratically constrained
optimization problem

min
x

f (x)

subject to Ax = b,
gi (x) ≤ 0, i = 1, . . . ,m2

x P Rn.

▶ f : Rn → R the convex objective function
▶ A P Rn×m1 the constraint coefficient matrix
▶ b P Rm1 the constraint coefficient vector
▶ g : Rn → R the quadratic (convex and nonconvex) constraints

The AC-OPF is known to be NP-hard [Bienstock et al., 2019].

61

Relaxations and approximations for AC-OPF

Substantial efforts have been devoted to finding tractable surrogates

Relaxations
▶ Provide lower bounds.
▶ Infeasibility certificates.
▶ Linear: Copper plate and

Network flow [Coffrin,
H. Hijazi, et al., 2016]

▶ Second-order conic: [Jabr,
2006; Kocuk et al., 2016]

▶ Quadratic convex: [Coffrin,
H. L. Hijazi, et al., 2016]

▶ Semidefinite: [Bai et al.,
2008]

Approximations
▶ Based on two ideas:

1. Engineering assumptions (line
parameters, voltage magnitudes,
angle differences)

2. Linearization/convexification
points.

▶ Linear: LPAC [Coffrin and Hentenryck,
2014], IV-Flow [O’Neill et al., 2012;
Castillo et al., 2016]

▶ Convex: SOC [Jabr, 2007], QPAC
[Coffrin, H. Hijazi, et al., 2015], Our work!

For a comprehensive review, [Molzahn et al., 2019].

62

AC-OPF Reformulation

Reformulating the AC-OPF as a Difference-of-Convex-Functions Program

min
x

f (x)

s.t. Ax = b,

gi (x) ≤ 0, i = 1, . . . ,m2

x P Rn

=⇒

min
x

f (x)

s.t. Ax = b,

ĝi (x)− ǧi (x) ≤ 0, i = 1, . . . ,m2,

x P Rn,

where ĝ (x), and ǧ (x) are convex functions.
▶ The reformulated problem is still nonconvex due to ǧ (x).
▶ Convexify using a first-order Taylor series approximation [Yuille et al., 2003;

Lipp et al., 2016].

min
x

f (x)

s.t. Ax = b,

ĝ (x)− ǧ (x̃)−∇ǧ (x̃)⊤ (x− x̃) ≤ 0,

x P Rn.

63

The QCAC Approximation

▶ A feasible convexification point, x̃, renders an inner convex
approximation of the original problem.

▶ What if the convexification point, x̃, is not feasible?

min
x,s

f (x) + λs

s.t. Ax = b,

ĝ (x)− ǧ (x̃)−∇ǧ (x̃)⊤ (x − x̃) ≤ s,
x P Rn, s P R≥0,

where λ is a penalty term and s is a nonnegative slack variable.
▶ Note that no further assumptions are made to convexify the

problem!
▶ Next, how can we predict good convexification points?

We can leverage solutions of historical instances using End-to-end
learning.

64

End-to-end learning

▶ Learning the mapping from the
input parameters of an optimization
problem to its solution.

▶ Given dataset {(xℓ, y∗
ℓ)}ℓPL, where

y∗
ℓ denotes a solution to the

optimization problem for the input
xℓ.

▶ In the context of the AC-OPF: the
input is the nodal demand vector
and the output corresponds to the
rectangular coordinates of the
nodal voltages at the solution.

▶ Main challenge: Enforce
constraints on the predictions!

x1

xl

...

z
(1)
1

z
(1)
2

z
(1)
3

z
(1)
m

...

z
(2)
1

z
(2)
2

z
(2)
m

...

ṽ1

ṽn

...

Input layer
(pd,qd)

Hidden layers Output layer
(ṽ re, ṽ im)

Standard feed-forward NN

65

Enforcing constraints in neural networks

Soft methods
▶ Penalizing constraint violations

▶ Augmented loss function
▶ PINNs [Nellikkath et al., 2022]
▶ Sensitivity-informed [Singh

et al., 2022]

▶ Augmented Lagrangian
methods
▶ ALM [Fioretto et al., 2020]

Hard methods
▶ Implicit layers [Amos et al., 2017]

▶ Postprocessing [Zamzam et al.,
2020; Li et al., 2022; Pan et al.,
2023]

▶ Self-supervised [Donti et al., 2021]

66

What constraints do we want to enforce?

The relationship between current injections and nodal voltages, known as
Ohm’s law, is linear: [

i re

i im
]
=

[
G −B
B G

] [
v re

v im

]
.

▶ However, some of the current injections, the ones with generation
and/or demand, are unknown before solving the problem.

▶ There is a subset of nodes whose current injections are known a
priori and equal to zero. Such nodes are called zero-injection nodes.

▶ This talk: A hard method to enforce Ohm’s law of zero-injection
nodes.

67

Enforcing hard linear equality constraints

Can we enforce hard linear equality constraints using only an
explicit layer?
▶ Explicit layers in feedforward

NNs can be expressed as[
v̂ re

v̂ im

]
= σ

(
W

[
ṽ re

ṽ im

]
+ b

)
,

where σ(·) denotes the
nonlinear activation
function.

▶ Goal: Find σ(·), W , and b
of the projection layer such
that a set of linear
equalities is satisfied during
training and inference.

x1

xl

...

z
(1)
1

z
(1)
2

z
(1)
3

z
(1)
m

...

z
(2)
1

z
(2)
2

z
(2)
m

...

ṽ1

ṽn

...

v̂1

v̂n

...

Input layer
(pd,qd)

Hidden layers Output
layer

(ṽ re, ṽ im)

Projection
layer

(v̂ re, v̂ im)

Proposed NN with projection layer

68

Projecting predicted variables
Orthogonal projection of the predicted variables (v̂ re, v̂ im) onto

Yz

[
v re

v im

]
= 0,

where Yz =

[
Gz −Bz

Bz Gz

]
.

ṽ4

Yzv = 0

v̂1

v̂3

v̂2

v̂4

ṽ1

ṽ3

ṽ2

Orthogonal projection of predicted voltages, ṽ , onto the nullspace of Yz .

69

Determining weights and biases

The orthogonal projection onto a linear set of equalities can be
formulated as a quadratic problem

(v̂ re, v̂ im) P argmin
vre,v im

∥ṽ re − v re∥2
2 + ∥ṽ im − v im∥2

2

s.t. Yz

[
v re

v im

]
= 0.

Its closed-form solution is given by[
v̂ re

v̂ im

]
= A∗

[
ṽ re

ṽ im

]
,

where A∗ = I− Y⊤
z

(
YzY⊤

z

)−1
Yz .

70

Determining weights and biases

▶ The closed-form solution can be represented as an explicit layer[
v̂ re

v̂ im

]
= A∗

[
ṽ re

ṽ im

]
⇐⇒

[
v̂ re

v̂ im

]
= σ

(
W

[
ṽ re

ṽ im

]
+ b

)
,

where σ(·) is a linear activation function, W = A∗, and b = 0.

▶ The matrix A∗ = I− Y⊤
z

(
YzY⊤

z

)−1
Yz , which corresponds to the

weights of the projection layer, only depends on the topology of the
network and is independent of the operating conditions. Hence, A∗

is only computed once for training and inference.

71

Numerical results

▶ Congested condition of the IEEE 118-bus system from the PGLib
[Babaeinejadsarookolaee et al., 2021].

▶ 100 samples for random active and reactive power demands, ±40%
and ±15% from the base case, respectively.

Table: Optimality gap comparison

Model
Optimality gap (%)

Median Min Max

QCAC approximation 1.4824 0.006 12.0822

SOC relaxation 25.2628 10.5189 32.574

SDP relaxation 10.0873 3.9027 15.1559

72

What about solution time?

10!1 100 101

Time (s)

0

20

40

60

80

100

P
er

ce
n
ta

ge
o
f
in

st
a
n
ce

s
so

lv
ed

QCAC SOC SDP

One order of magnitude faster and more accurate than the SDP
relaxation!

73

Even more important, what about distance to feasibility?

0 20 40 60 80 100 120 140

Distance to feasibility

0

20

40

60

80

100

P
er

ce
n
ta

g
e

o
f
in

st
a
n
ce

s
so

lv
ed

QCAC SOC SDP

Figure: Feasibility comparison of studied models

And significantly closer to being feasible!

74

Generation dispatch correlation

Table: Correlation coefficient comparison

Model
Correlation coefficient

Active power Reactive power

QCAC approximation 0.9949 0.8943

SOC relaxation 0.8605 0.6101

SDP relaxation 0.9607 0.5601

▶ Better correlation in generation dispatch makes the model more
suitable for applications sensitive to active and reactive power
generation.

▶ For instance, unit commitment and optimal reactive power dispatch

75

Conclusions

▶ ML for combinatorial and global optimization is a fast-evolving field.
▶ A number of primal and dual tasks can potentially be accelerated

using ML.

	Machine Learning for Combinatorial Optimization
	Ecole: A Gym-like Library for Machine Learning in Combinatorial Optimization Solvers
	Machine Learning for Global Optimization
	Convex Approximation for AC-OPF Using a Feasibility-Enhanced Neural Network

