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This presentation is based on our recent invited 
perspectives paper for the AIChE Journal
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Motivating paper
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• Practical and functional differences of Quantum 
Computing (QC) and Classical Computing (CC)

• Promise to accelerate certain computational tasks
• Few available experimental evidence of advantage

• Significant progress in algorithms driven by 
research

• QC does not extend CC computability, distinction in 
matter of efficiency

• Progress in hardware driven by interest from
public and private sectors

• Progress in software ecosystem driven by 
growing community
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Introduction
• Progress in 40 years but still not achieving “full promise of QC”
• We are living in the NISQ era

• Fault-tolerance estimated to be reached soon (?)

• Advantage experiments highlight the physical possibility of speedups, it is now an 
engineering challenge

• Observed for tailored problems, not corresponding to any industrial application yet4/03/2022 4

• Moderate size (~50 qubits) devices 
• Too many for classical simulation
• Too few for error correction

• Devices subject to physical noise 
• Distinction of physical and logical qubits

Retrieved from research.ibm.com/blog/ibm-quantum-roadmapRetrieved from quantumai.google/learn/map

https://research.ibm.com/blog/ibm-quantum-roadmap
https://quantumai.google/learn/map


Introduction
• Chemical industry in privileged position to take early advantage of QC
• Research already in progress in

• Early-stage experiments to tackle chemical engineering applications
• Resource estimation for full-scale applications

• Chemical and biomolecular product design may also benefit from QC
• Chemical property estimation
• Molecular reaction dynamics

• The growing interest in QC also leads to confusion and hype about its potential and 
present-day status!!! 

• Here we discuss algorithms with potential usage for ChemE and assume that 
hardware will mature to implement them4/03/2022 5



Solving problems using Quantum Computing
• Definition of Qubits, States, Gates, Circuits, and Algorithms

• QC seems to seamlessly operate on and process information that grows exponentially 
with number of qubits when running quantum circuits

• Apparent parallelism!

• Probability amplitudes of qubits can interfere both constructively and destructively
• Main ingredients for theoretical advantage of quantum algorithms
• Examples of such advantages in algorithms for simulation of quantum systems, number 

factorization, and search and optimization
• Need not be probabilistic, we use as an example Deutsch-Jozsa algorithm!
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Solving problems using current Quantum Computers
• Practical realization of advantage requires implementation of wide and deep circuits
• Current available devices can still be used as shallow circuits that describe probability 

distributions difficult to represent using CC
• Variational quantum algorithms seem useful in the NISQ era, as outer classical 

optimization loop to train ansatz can help with devices limitations
• Promising for cases where information is challenging to represent classically

• Wave functions in computational chemistry
• Complex distributions to optimize in machine learning
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Computational Chemistry and Molecular Simulation
• Many applications in ChemE require 

kinetic and thermodynamic properties
• Design and modeling of chemical

processes, materials, separations,
catalysts, and proteins

• Computational chemistry allows to 
replace challenging direct measurement 
and provide molecular-level 
understanding

• Computational Chemistry believed as
first domain where QC may have 
substantial advantage against CC
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Computational Chemistry and Molecular Simulation
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Typical workflow for estimating kinetic or 
thermodynamic properties
• Choose basis set to represent electrons in system (↑)

• Usually only valence e- are modeled and core potential is 
used for inner e-

• Minimally one basis function is used for each valence e-

• STO-3G commonly used
• Usually insufficient

• Limiting case if infinite basis set

• Choose approximation of Schrödinger eq. (→)
• Key attribute is degree of electron correlation 

• Hartree-Fock approximation, no excitations and all e- paired
• Usually insufficient

• Limiting case full configurations interactions (FCI) considered



Computational Chemistry and Molecular Simulation
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Typical workflow for estimating kinetic or thermodynamic properties
• Exact solutions are limiting case in both axis

• FCI limit with simple basis sets still are beyond current CC capabilities
• N e- require 2N distinct states – e.g., Benzene N=42, ~4e12 complex numbers

• Density Functional Theory (DFT) 
proposed to alleviate scaling issues

• Assumption e- don’t interact
• Limited accuracy insufficient for several 

systems of interest

• Possible advantage from QC in 
representing 2N wave function of FCI 
using N qubits



Computational Chemistry and Molecular Simulation
Workflow to compute thermodynamic properties and 
kinetic rate constants
1. Compute ground state electronic energy
2. Construct potential energy surface (PES)

• Compute electronic energy for multiple geometries

3. Compute vibrational modes of system
• Usually through solution of vibrational Schrödinger eq.
• Approximated with harmonic oscillators

4. Compute electronic partition function
• Thermodynamic properties computable from partition function
• Kinetic rates require PES for reactants, products, and their 

transition state (saddle point of PES of reactants and products)
4/03/2022 11

QC has the potential of 
improving the performance 
of this three key steps

Retrieved from
github.com/Qiskit/qiskit-nature

Developed Software workflows 
addressing these process, e.g.,

https://github.com/Qiskit/qiskit-nature


Optimization
• Optimization problems are ubiquitous in science and engineering

• Chemical Engineering has been a source of problem and algorithms for the wider 
community given the issues we encounter

• Many of these optimization problems cannot be solved “efficiently”
• I.e., belong to NP-complete or NP-Hard complexity classes
• Exponential speedups are believed as unreachable

• Given application we still are encouraged to develop solution methods
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The suspected relationship of BQP to 
other problem spaces

Retrieved from Michael Nielsen and Isaac Chuang 
(2000). Quantum Computation and Quantum 
Information

• QC can provide asymptotic speedup for certain 
optimization problems

• Hard to predict scale at which this is observable
• No quantum advantage for practical optimization yet observed
• Practical and heuristic speedups are of interest!



Optimization
• Optimization problems presented from a mathematical programming perspective

• Classified according to objective/constraints linearity/convexity and variables discreteness

• Proposed algorithms with provable speedup for convex problems (LP/SDP)
• Most rely on Q Fourier transform, Q phase estimation, qRAM – Beyond NISQ capabilities

• Heuristic methods for discrete optimization
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• Performance bounded by complexity results
• Unachievable exponential speedup
• Complete enumeration quadratically faster via 

Grover search
• Possible exploitation of structure in the problems

• Several methods devised for Ising model ↔
Quadratic Unconstrained Binary Opt (QUBO)



Optimization
• Quantum Adiabatic Algorithm (QAA) proposed for 

discrete optimization
• Adiabatic evolution preserves energy ranking of states
• Start evolution from system at ground-state
• Evolve system adiabatically to one that encodes 

optimization problem

• Quantum Annealing
• Physical implementation of idealized QAA
• Heuristic method from optimization perspective

• Myriad of physical or physics-inspired methods
• Coherent Ising Machines, Simulated Bifurcation 

Machines, Digital annealers, …4/03/2022 14
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Optimization
• Quantum algorithm to solve discrete 

optimization problems
1. Map the optimization problem to QUBO/Ising
2. Assign variable in QUBO/Ising to a qubit in a 

system.
3. Apply a circuit, aiming to maximize the probability 

of measuring the optimal solution of the problem. 
4. Measure the state with output as qubit values.

• These values yield the optimal solution with 
some probability

5. Repeat this procedure several times and return the 
best-found solution
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Proposal: Quantum Alternating 
Optimization Ansatz (QAOA)

• Variational algorithm with 
Ansatz coming from the QUBO 
mapping of the problem and 
the initial state of QAA



Machine Learning
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• Learning patterns from data has become a useful paradigm in science and engineering
• ChemE is not the exception with a growing interest in Machine Learning (ML)

• Observed quantum advantage in different ML tasks motivate looking into it
• Learning parity with noise, by IBM in 20171

• Learning from experiments gathered from quantum sensors, by Caltech in 20212

• Classification of relevant advances of QC in ML using learning task, realization is near-
term devices or requiring fault-tolerance devices, and technology involved in it.

1. doi.org/10.1038/s41534-017-0017-3 2. doi.org/10.48550/arXiv.2112.00778

https://doi.org/10.1038/s41534-017-0017-3
https://doi.org/10.48550/arXiv.2112.00778


Conclusions and open questions
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Current state of QC leads us to
identify 3 areas for ChemE with
potential quantum advantage 
• Computational Chemistry

• Optimization

• Machine Learning

Although potential, there are still challenges to 
overcome
• Current size limitations will only allow for 

small molecules to be tackled
• The QM calculations are just part of the 

workflow, we need to address it all

• Complexity of discrete optimization bounds 
the quantum advantage to practical 
improvements although not exponential

• The data feeding and extraction delineates 
how to better make use for QC



Conclusions and open questions
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• Invitation for our community to 
contribute to the development in QC

• ChemE training useful to tackle 
several of the great challenges in the 
area

• We can serve a big service to create a 
“quantum-ready workforce”

• Invitation to us in this Workshop: How about if we generate the content that our 
community needs to “jump into” Quantum Computing?
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