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ABSTRACT 

Discharge produced plasma (DPP) devices have been proposed as a light source for EUV lithography.  A key challenge 
for DPP is achieving sufficient brightness to support the throughput requirements of exposure tools for high-volume 
manufacturing lithography.  To simulate the environment of the EUV source and optimize the output of the source, an 
integrated model is being developed to describe the hydrodynamic and optical processes that occur in DPP devices.  The 
model includes both plasma evolution and magnetohydrodynamic processes as well as detailed photon radiation 
transport.  The total variation diminishing scheme in the Lax-Friedrich formulation for the description of magnetic 
compression and diffusion in a cylindrical geometry is used.  Several models are being developed for opacity 
calculations; a collisional radiation equilibrium model, a self-consistent field model with Auger processes, and a non-
stationary kinetic model.  Radiation transport for both continuum and lines with detailed spectral profiles are taken into 
account.  The developed models are integrated into the HEIGHTS-EUV computer simulation package. Preliminary 
results of a numerical simulation of xenon gas hydrodynamics and line radiation output are presented for various plasma 
conditions. 
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1. INTRODUCTION 

This paper presents an integrated model that is being developed to describe the hydrodynamics and optical processes that 
occur in discharge-produced plasma (DPP) devices.  The developed model will eventually address three main subjects: 
plasma evolution and magnetohydrodynamic (MHD) processes, detailed photon radiation transport, and interaction 
between plasma/radiation and material.  Regions with differing propagation speeds of perturbation require accurate 
numerical solutions of the MHD equations.  The total variation diminishing (TVD) scheme in the Lax-Friedrich 
formulation for the description of magnetic compression and diffusion in a cylindrical multidimensional geometry is the 
most suitable and is used in our model.  Several models are being developed and can be used to calculate opacity: a 
collisional radiation equilibrium (CRE) model, which is a self-consistent model that takes into account Auger processes, 
and a nonstationary kinetic model that depending on the complexity of the problem and the availability of computer 
time.  Radiation transport for both continuum and lines with detailed spectral profiles are being taken into account.  The 
developed models are integrated into the HEIGHTS–EUV computer simulation package.  The package can also be used 
to study the hydrodynamics and radiation of two-gas mixtures in dense plasma focus (DPF) devices in the presence of 
impurities and erosion products that can affect radiation output.   

The goal of this paper is to provide our initial simulation of MHD and optical processes that occur in DPP devices of 
standard Mather-type electrode construction [1].  Such a device is schematically shown in Fig 1.  The electrodes are 
shown in dark color and are of equal height.  The device is filled by xenon gas under an initial pressure in the range of 
several tens of mtorr at room temperature, corresponding to an initial density of the gas in the range of 1014 -1015 cm-3.  It 
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is also assumed that a preionization step that heats the gas to a temperature of ≈1 eV occurs near the bottom of the 
device.  

 

 

Fig. 1. Schematic view of a DPF device 

2. MATHEMATICAL MODEL 

We solve the general set of three-dimensional (3-D) resistive conservative MHD equations [2] that contain the 
description of the behavior of conductive flow in the magnetic field due to current displacement triggered by the 
discharge.  The processes of all magnetic diffusion and radiation energy loss are included.  
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Equations 2.1-2.4 represent, in Gaussian units, the conservation of mass, momentum, energy, and magnetic flux, 
respectively.  The plasma is described by the conservative variables of mass density ρ , momentum density vρ , total 

energy density e , and magnetic field B.  In the rest of the paper, the magnetic permeability µµµµ  is assumed to be 1.  Total 
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energy density is determined as a sum of internal, kinetic, and magnetic energy densities, whereas the pressure term is 
separated into hydrodynamic and magnetic parts: 

etot = eh + B2

8π
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To complete this full system of MHD equations, thermodynamic pressure ( )ρ,intepp hh = , resistivity 

( )ρηη ,inte= , and thermal conductivity ( )ρχχ ,eint=  functions are calculated from the equation of state, 
discussed below. 

Applying cylindrical symmetry of a plasma focus device, we wrote the general set of MHD equations (2.1–2.4) in 
axisymmetrical cylindrical geometry (r, ϕ, z).  We neglect the plasma motion in the ϕ direction and assume that 
magnetic field has only one component Bϕ.  Therefore, to simplify the expressions, subscript ϕ is further omitted from 
the magnetic field term.  

In coordinate formulation, the general set may be written as 
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and the solution of U entirely defines the state of the system.  
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The conservative form of the initial equations allows the use of the TVD method in Lax-Friederich formulation (TVD-
LF) for the numerical solution of the system [2].  A second-order TVD-LF scheme can be applied to the system of 
conservation laws that does not use either a Riemann solver or the characteristic wave solution.  Matrix formalism 
enables us to change the governing equations (2.6) without significantly modifying the method.  For example, to 
calculate a two-gas mixture approximation, it is necessary to add the second continuity equation and extend the elements  
of matrixes to six terms.   

To calculate the radiation heat flux, the radiation transport equation (RTE) [3, 4], which presents the energy conservation 
law for the total radiative intensity S must be solved.  In this study, we utilized the discrete-ordinates method, which 
varies the radiative intensity along specified directions [5].  The RTE is thus solved for a set of discrete directions that 
span the total spherical solid angle of 4π. 

At each point of the MHD zone, local temperature T , the Plank function IP, and optical coefficients emiκ , and absκ  of 
emission and absorption of the photon with energy E define the specific intensity of radiation.  In the case of 
axisymmetric cylindrical coordinates ( )zr, , the RTE for intensity IE can be written along the direction s as 
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Here, θ is the angle between the direction of the ray s and the z-axis, ϕ  is the angle between the projection of the 
direction s to the plane, perpendicular to z and normal to the cylindrical surface, and ϕµ cos= .  The intensity in 
direction s is calculated by integration over all of the photon frequencies.  Net flux Srad is obtained by integrating over 
all of the angles: 
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The radiation energy loss in each cell is then found from radradQ S⋅∇= .  Essentially, this method is the result of finite 
differencing of the directional dependence of the RTE.  Integrals over solid angles are approximated by numerical 
quadrature, the choice of which defines the directions of the RTE.  The solution is carried out simultaneously with the 
solution of energy balance to provide the distribution of the local energy source, temperature, and density profile.  

The calculation of thermodynamic and optical plasma characteristics is performed in several steps, which are described 
in more detail in the section on atomic and opacities data.  

3. BOUNDARY CONDITIONS 

To simulate various possible effects that occur in the boundaries of the EUV source, we have considered several 
methods of stating these effects in the form of boundary conditions.  In simplified form, one may subdivide these 
conditions into two major parts.  A hydrodynamic part includes the conditions applied to hydrodynamic flow in the area 
or near the boundaries.  Magnetic field conditions manage the behavior of the current and the magnetic field near the 
surfaces of the device.  In the discussion below, we refer the reader to Fig. 2. 
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Hydrodynamic boundary conditions: 

 rigid wall boundary: 0=
bnF , where nF  is normal to the boundary component of hydrodynamic flux.  Such a 

condition is applied at the cathode and anode surfaces |GF|, |GH|, |HE| and |CD| to set up the absence of flow 
passing through the boundary; 

 Z-axis symmetry: rr vv 10 ρρ −= , rr vv 21 ρρ −=− .  A mirrorlike condition is stated in |OA| that there is no 
radial hydrodynamic flow on the Z axis. 

Magnetic field initial and boundary conditions: 

 driving magnetic field: applied in |ED| as B = 2I
cr

, where I is the total current of the device, r is the upper 

radius, c is the speed of light; 

 conducting solid wall without surface current:
∂ rB( )

∂r
= 0.  This condition states that the current is 

concentrated at the surface of a conductor and is applied at the surface of the cathode |CD| and the internal 
surface of the anode |GF|; 

 ideal conducting wall, total current flows at the surface: B = 0.  As above, this condition states that total 
current is concentrated at the external surface of the conductor, and is applied on the external surface of the 
anode |HE|. 

 Z-axis symmetry: B r= 0 = 0, B0 = B1, B−1 = B2.  The symmetry of the domain defines the symmetry of the 
magnetic field. 

4. ATOMIC AND OPACITIES DATA  

The results of theoretical approximations of atomic data strongly depend on the chosen theoretical models [6-8], and, 
this is particularly true for high-Z materials.  The atomic energy levels and radiative transition probabilities are usually 
calculated by modified simplifications of the Hartree-Fock (HF) method rather than by the pure H-F method.  One of the 
most widely used simplifications, suggested by Slater [9] is known as the method of Hartree-Fock-Slater (HFS).  The 
energy levels in HFS are calculated for the whole configurations, i.e., just one atomic level corresponds to each pair of 
quantum numbers ( )ln, , neglecting the LS-splitting of nonfilled shells.  

The problem is, in fact, that such shells may contain a large number of terms and levels. For example, to account for 
splitting each term into levels with momentum J, the d5 shell contains 16 terms and 37 levels and the f7 shell 
correspondingly contains 119 terms and 327 levels.  In HFS approximation, the transition 4dq – 4dq-14f will have just one 
strong line, but splitting the level will replace it into several hundred weak lines.  Knowing that transition strength is left 
unchanged, the radiation in strong lines may be collapsed for dense plasma, whereas the radiation in weak lines stays 
optically transparent.  In cases when the temperature of xenon plasma reaches 20-30 eV and densities are in the range of 
1017-1018 cm-3, most radiation would be concentrated in lines and so, line splitting may dramatically influence the total 
hydrodynamic behavior of plasma through a radiation transport mechanism.  This influence is discussed later, where Fig. 
2 presents the calculated absorption coefficient with and without line splitting.  

Another problem is that, in ions with intermediate and heavy atomic numbers, some inner levels may have energies 
comparable to the ionization potential and the transitions from inner shells cannot be neglected.  For example, in our 
situation of xenon plasma, where the major radiating wavelength region of interest is close to 13 nm, transitions from 
outer shells to 4dq − 4dq-15p must be considered with transitions from the inner shells, say 4p64dq − 4p54dq+1 and 4dq − 
4dq-14f.  Simplified methods may contain semiempirical information of atomic energy levels.  Despite the fact that, for 
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light elements, such tabulated information is sufficiently complete, for intermediate and high-Z elements it is usually 
incomplete [10].  

Generally, to accurately describe the atomic energy levels in xenon and other intermediate atoms, self-consistent Dirac-
Fock or Hartree-Fock with relativistic corrections must be applied when the transition is calculated as the difference of 
total energies between levels.  In practice, this procedure might be computationally intensive. 

To calculate the structure of the atomic energy levels and the transition probabilities, the following procedure was 
applied by means of the HFS method, which gives one radial wavefunction for each shell of the atom.  The obtained 
wavefunctions were used to calculate relativistic corrections, transition wavelengths, as well as dipole transitions from 
ground state to the highly excited state (principal quantum number may reach up to 10) allowed by the selection rules.  
Discrete transitions from inner shells were also taken into account, with energies limited to the value dependent on 
ionization potential. Photoionization crosssections were found for all inner and excited states.  Details of these 
computations may be found elsewhere [6, 11].  This procedure was repeated for the total ionization of the atom in 
question.  The procedure of detailed accounting for spin-orbit splitting of nonfilled shells by using Slater integrals Fk, Gk, 
and constants of spin-orbit splitting ξk is implemented as given by Ref. 11. 

It is known and has been thoroughly examined in several studies [7, 8], that radiative emission and transport plays a key 
role in the dynamics and energy balance of laboratory plasma.  In recent years, several studies [12, 13] have shown that 
high-temperature, moderate-density plasma is not in local thermodynamic equilibrium and the radiative properties of 
plasmas that are optically thick to line radiation are not well-described by either “coronal” or Saha-Bolzmann models. 

Normally, in the case of intermediate temperatures and densities, when collisional processes are still significant but, at 
the same time, radiative effects become apparent and cannot be negligible, it is necessary to solve the system of kinetic 
equations self-consistently with the radiation field.  The model in self-consistent formulation takes into account non-
local processes of photoexcitation and photoionization, and so, significantly complicates the computations.  The problem 
becomes particularly difficult for high-Z plasma, because in evaluating the influence of external photons, it is necessary 
to account for a very large number of ionization and excitation levels. 

This study utilizes the description of atomic population levels by a collisional-radiation equilibrium (CRE) formulation, 
which is equally applicable to the limited cases of temperature and intermediate-temperature interval, because it includes 
both collisional and radiative effects.  The fact that the CRE model considers the transitions between all atomic levels is 
of particular importance.  Nonlocal effects are accounted for by an escape factor [14], which neglects photoexcitation in 
continuum and reduces the strength of spontaneous transitions.  Such an approximation is a fair description of the 
plasma behavior under conditions when an external source of hard radiation is absent. 

The calculation of plasma ionization state and population levels n for a prescribed set of temperatures and densities is 
accomplished by solving the system of kinetic equations  

ji
ji

j
ij

iji
i KnKn

td
nd ∑∑

≠≠

+−= . (4.1) 

Collisional electron excitation and de-excitation, collisional electron ionization, three-body recombination, spontaneous 
transition, photo- and di-electronic recombination are included in the calculation of the total rates of electron transition 
Kij from level i to level j.  Ion and electron concentrations Ni and Ne are defined from known population of levels for a 
given temperature and substituted into a set of equations of state. Generally, a two-temperature approximation for 
pressure p contains the corresponding terms for kinetic energy of ions and electrons.  The equation for internal energy 
eint contains the terms for ionization and excitation of electrons: 
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In our approximation, electron and ion temperatures are set equal, as Te = Ti= T.  
Reciprocal to the resistivity η, the electrical conductivity σ is found as the sum of scattering crosssections σc, and σn on 
charged and neutral particles.  
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Here, we use standard notation for Coulomb log Λ , concentration of neutral atom N0, and mean ion charge Z.  
Empirical values of transport crosssections s0 are taken from Ref. 15. 

Thermal conduction may be an important mechanism of energy redistribution in plasma in certain temperature regions 
until radiation becomes the dominating process [16].  Such a region is usually a weakly heated area with a low level of 
ionization, and, consequently, with a low rate of collisional excitation.  Depending on the temperature of the region, 
various effects may take place, and each may contribute its own part to the total energy balance.  In a cold, weakly-
ionized gas, the classical approximation of dispersion of elastic spheres is the main energy redistribution mechanism, 
and the thermal conductivity el

χ depends on the average thermal velocity of the atom, and is proportional to T .  
When temperature increases, dissociation becomes more important. When a molecule moves, the temperature on its path 
is changing and the concentration of molecules and neutral atoms is varying, and transferring energy equivalent to the 
value of the dissociation potential.  Diffusion of neutral atoms to the weakly-ionized plasma leads to energy transfer 
known as ambipolar diffusion.  In intermediate levels of ionization, such neutral atoms would also ionize plasma and 
transfer energy.  When the ionization level becomes significant, electron-ion dispersion dominates over other processes. 
We use all mentioned effects in our computation of thermal conductivity, except the process of ion-ion dispersion 
because so-called “radiative thermal conduction” is considered explicitly in the form of radiation transfer. 

The electronic transitions and their accompanying absorption and emission of photons are subdivided into three types: 
bremsstrahlung; photoionization from ground, excited, and inner levels; and discrete transitions.  The later are 
approximated in the form of dipole transitions and include transitions between ground and excited states, transitions 
between excited states, and, partly, the transitions from inner shells. Because of its importance, the profiles of spectral 
lines is processed very carefully by means of all major broadening mechanisms such as radiation, Stark, Doppler, and 
resonance broadening [17]. 

The total absorption coefficient absκ is calculated as a sum of absorption coefficients for, free-free ffκ , bound-free 

bfκ , and bound-bound bbκ  radiation transitions, weighed to the value of the population levels: 
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κ ff (T ,ρ,hω) = σ i T,hω( )
i
∑ Ni T,ρ( )Ne T,ρ( ) 1− exp −[ hω kT]( ),

κbf (T,ρ,hω) = σ ij
j
∑

i
∑ (hω)Nij (T,ρ),

κbb(T ,ρ,hω) = π e2

mecj ,k
∑

i
∑ f jkΦ(T,ρ,ω)Nij T ,ρ( ).

 (4.4) 

Knowing the crosssections of reverse processes, we can calculate the total emission coefficient emiκ  by similar 

formulae.  The values of oscillator strengths fjk, crosssections for photoionization ijσ , line profile Φ , and Gaunt factor 

iG are explained in details elsewhere [6,11,18].  

Energy level splitting produces a very complicated nonmonotonic dependence of the absorption coefficient on the 
frequency of incident photons.  The importance of splitting was discussed above and is demonstrated in Fig. 2.  To 
accurately describe the distinctions of the spectrum, the scale absorption frequencies must be detailed.  In this study, we 
first generated 100,000 frequency points that are inconvenient for the practical solution of the multidimensional RTE.  In 
solving the radiation transport equation, mean group coefficients are normally used.  When grouping does not have a 
strict algorithm and is defined by semi-automatic methods.  The complexity of the choice of grouping methods is 
determined by the required accuracy of the computation, the frequency region of interest, and the available computer 
resources.  Our study includes various algorithms of averaging by Planck and Rosseland and the number of spectral 
points may vary from tens to hundreds.  A comparison of results calculated with various averaging methods allows us to 
evaluate the sensitivity of the calculations to the spectral choice, whereas convergence of the radiation flux by the 
number of groups estimates the accuracy of the computation. 

10-6

10-4

10-2

100

102

11 12 13 14 15 16

Wavelength (nm)  

10-6

10-4

10-2

100

102

11 12 13 14 15 16

Wawelength (nm)  

Fig. 2. Absorption of Xe plasma at temperature of 30 eV, density 1016 cm-3  
with line splitting (right) and without splitting (left) 

5. NUMERICAL METHOD 

The HEIGHTS-EUV is subdivided into several major parts; the geometrical and configuration parameters; initial plasma 
state, hydrodynamic mesh, and plasma parameters, stated in the block, which calculates MHD motion of the plasma; and 
atomic and radiation transport parameters.   
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The TVD-LF algorithm, implemented in HEIGHTS-EUV, is a second-order monotonic-upwind-schemes-for-
conservation law (MUSCL).  The discrete approximation is carried out by a central finite-difference scheme, 
schematically shown in Fig. 3.  The Hancock predictor step [19] is implemented because it is superior to the simple 
Euler transport step: 
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Fig. 3. Spatial discretization diagram and the system of boundary conditions. 

The described method for linear approximation of solution U and the corresponding fluxes at boundary interfaces 
achieve second-order accuracy in spatial discretization.  HEIGHTS-EUV may generate limited differences by using four 
types of slope limiters: simple minmod, UMIST, Woodward, and superbee, described in detail by Ref. 19.  Enough 
stable test results were obtained by using the simple minmod limiter: 
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The final expression for the TVD solution at the n + 1 time step is given by 
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Analysis of a TVD-LF scheme shows that the total solution of the MHD equations with TVD corrections allows 
component-wise decomposition. We have used this property to elaborate the method of setting up boundary conditions 
and avoiding either introducing coordinate charts or implementing “fractional” mesh cells. 

The radiation transport part is implemented separately, because it requires significant computational resources.  The 
formal solution of the RTE (Eq. 2.7) is readily written as  

( ) ( ) ( ) ( )∫ −− +=
s

abs
ss

E
s

E dseBeIsI
0

',0, '0 ρκττ , (5.5) 

which expresses the fact that the intensity at any point and in a given direction is the result of the emission at all anterior 
points s’, reduced by the factor ( )',sse τ−  to allow for absorption by intervening matter where τ  is the optical thickness 
of the material between points s and s’. 

The values of intensity are calculated in the bounds of the hydrodynamic mesh cells, whereas optical characteristics, 
defined by temperature and density, are calculated by mean values in center points of the cells.  Integration over spectral 
groups is performed to obtain the total flux at central points of hydrodynamic cells, where spectral intervals are given by 
boundary values.  Because of the fact that discrete-ordinates algorithms allow photon streaming only in prescribed 
directions, low-order quadrature is unable to accurately approximate the scalar flux by integrating over the angular flux 
and can exhibit nonphysical oscillations, because regions lying between the directions are not covered by photons 
emanating from the source.  Mesh refinement or increased order of angular quadrature may only mitigate the effect.  In a 
critical situation, when such a ray effect must be eliminated, a set of coupled transport equations, invariant under discrete 
rotations, may help [20].  In our study, extremely high-order (up to 96) Gaussian quadrature is used [21] to integrate 
over angles ϕ , and θ (2.8), which give a direction of the ray.  Plain geometrical construction and the use of cylindrical 
symmetry allow the coupling 3-D radiation transport resolution into two-dimensional MHD space. 

Because of the large number of rays, the computation rate may escalate to a high level, even if the spatial mesh order is 
not very large.  Parallel computers are traditionally used to speed up an application.  The resolution of RTE is 
implemented as a parallel message passing interface procedure [22], allowing a gain by simultaneously calculating the 
net fluxes Srad at several spatial points.  An unsophisticated algorithm of load balancing is activated to dynamically 
distribute the amount of work according to the processor speed that makes possible the utilization of homogeneous as 
well as heterogeneous clusters of workstations. 
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6. VALIDATION AND BENCHMARKS 

To validate the MHD models and benchmarking of the code, two test problems were solved and compared with known 
results.  The first test problem is extensively described in Ref. 23, where studies of a supersonic flow around a sphere 
without a surrounding magnetic field are discussed.  The results reported in Ref. 23 and those numerically calculated by 
HEIGHTS-EUV are shown in Fig 4.  We see from the figure that our computation almost exactly repeats the tabulated 
density distribution along the radial axis.  The second test consisted of resolving the dynamic of one-dimensional z-
pinch, and comparing the results with those reported in Ref. 24, in which implementation of several MHD-schemes 
related to a pinch problem are reported.  We have compared our TVD-LF scheme with magnetic field to Lagrangian and 
Eulerian formulations.  The results of z-pinch simulations are presented in Fig. 5.  As one can see, our implementation is 
a satisfactory trade-off between Eulerian and Langrangian schemes.  The density curve does not have the nonphysical 
oscillations seen in results obtained by the Eulerian method.  Despite the fact that HEIGHTS-EUV does not isolate the 
shock front as the Lagrangian scheme does, our simulation package does not have the difficulties known to the mesh 
cells, which would inevitably appear in the Lagrangian formulation at the moment of the pinch collapse. 

 

 

Fig. 4. Shock wave pressure from 1.5 M flow  
around a sphere 

 

Fig. 5. z-pinch at 0.49 s 

 

 

 

7. RESULTS AND DISCUSSION 

Figures 6 and 7 show the preliminary results of a DPF discharge as simulated by the HEIGHTS-EUV package.  The 
results shown are near the moment of plasma pinching.  The absolute values of the density and temperature depend on 
the detailed physics of the discharge as well as on the electric circuit design and the current profile.  The maximum 
radiation is emitted near regions of temperature below 50 eV. Future analysis will study the effect of initial gas pressure, 
preionization channels, and electric current profile on the overall performance and efficiency of the discharge 
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Fig. 6. Temperature and density distribution close to pinching time 

 
Fig. 7. Radiation Flux near pinching time 

. 

8. CONCLUSIONS 

This paper presents an integrated model that is being developed to describe the hydrodynamics and optical processes that 
occur in discharge-produced plasma (DPP) devices.  The model addresses three main subjects: plasma evolution and 
magnetohydrodynamic processes, detailed photon radiation transport, and interaction between plasma/radiation and 
material.  The developed models and numerical methods are being implemented and integrated in the computer 
simulation package HEIGHTS-EUV.  The package, when completed, will be a tool that can be used to study, optimize, 
and enhance our understanding of the hydrodynamics and radiation processes in dense plasma discharge devices and the   
issues related to component erosion and lifetime estimates. 
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