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Laser-produced plasma (LPP) devices have been modeled as the light source for extreme

ultraviolet (EUV) lithography. A key challenge for LPP is achieving sufficient brightness

to support the throughput requirements of high-volume manufacturing. An integrated model

(HEIGHTS) was applied to simulate the environment of EUV sources and optimize their

output. The model includes plasma evolution and magnetohydrodynamic processes in a two-

temperature approximation, as well as photon radiation transport determined by the Monte

Carlo method. It uses the total variation diminishing scheme for the description of magnetic

compression and diffusion in a cylindrical 2-D geometry for the target. Generation of the

internal magnetic field with nonparallel density and temperature gradients was also con-

sidered. Preliminary results from numerical simulation in hydrodynamics and line radiation

output of xenon and tin plasmas are presented for planar and droplet targets.

INTRODUCTION

The extreme ultraviolet (EUV) lithography community has made several
important contributions to improving the radiation source device. Recent advances
in laser systems with a high repetition rate and high average power suggest the feasi-
bility of modular, flexible, and relatively inexpensive microelectronic production
facilities based on laser plasma sources. Challenges remain. Modern projection lith-
ography systems require [1, 2] as a minimum 1% conversion efficiency of laser light
into soft X-rays within a 2% bandwidth at 13.5 nm, where multilayer reflectivity of
more than 60% can be routinely achieved by Mo-Si mirrors. Final in-band power
must be obtained, with an intermediate focus over 115W. These requirements
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necessitate investigation and optimization not only of laser power sources but also
laser irradiation parameters, laser energy deposition, target material, target design,
etc. In addition, the multidimensional processes of plasma motion fill a very impor-
tant place. Solving problems related to these requirements is best done by computer
simulation and benchmarking with available experimental data.

For that purpose, an integrated magnetohydrodynamics (MHD) model and its
base HEIGHTS code [3–5] are used to describe the hydrodynamics and optical pro-
cesses that occur in laser-generated plasmas. The model considers four main pro-
cesses: laser radiation absorption, plasma evolution by generation of a magnetic
field, radiation transport, and EUV generation in the 13.5-nm diapason. The inte-
grated model includes the total variation diminishing (TVD) scheme in the Lax-
Friedrich formulation [6, 7] for the description of the laser-produced plasma motion,
an implicit scheme with sparse matrix solver for heat transport and magnetic
diffusion processes, and the weight Monte Carlo model [8, 9] for radiation transport
and EUV output simulation. Several models [10–12] are being developed and can be
used to calculate opacity: a collision radiation equilibrium (CRE) model, which is a
self-consistent model that takes into account Auger processes, and a nonstationary
kinetic model that depends on the complexity of the problem and the availability
of computer time. Different sets of opacities for the MHD and the EUV calculations
were used: (1) 3,693 spectral groups for Xe and 3,240 groups for Sn in a wide range,
and (2) about 2,500 spectral points for Xe and up to 5,000 spectral points for Sn
within the EUV region.

This article paper describes our initial simulation of MHD and optical
processes that occur in laser-produced plasma (LPP) devices in which the target
has a planar and droplet geometry. Xenon and tin were tested as target materials.

NOMENCLATURE

A, C, D linear coefficients

B magnetic field

c light speed

cp specific heat

e electron charge

ee electron specific internal energy

ei ion specific internal energy

F, G, P convective fluxes

KBS inverse bremsstrahlung coefficient

kB Boltzmann constant

ln K Coulomb logarithm

n concentration

p pressure

Q external source

t time

T temperature

U vector of solution

v plasma velocity

Z ionic specific charge

Dr step by r axis

Dt time step

Dz step by z axis

g resistivity

k thermal conductivity

m magnetic permeability

n frequency of laser light

np plasma frequency

se time between electron interactions

X cyclotron frequency

X vector of external source

Subscripts

e electrons

i ions

m magnetic

tot total

Superscripts

n time-step number

r by r axis

z by z axis
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Schematically simulated LPP devices in 2-D cylindrical geometry are shown in
Figure 1. The device chamber is filled by the working gas under an initial pressure
in the range of several tens of mbar at room temperature, corresponding to an initial
density of the gas in the range of 1014–1015 cm�3. It is also assumed that the target
material is preheated to a temperature of �1eV.

MATHEMATICAL MODEL

We consider the general set of 3-D resistive MHD equations [6] expanded with
heat transport fluxes, radiation fluxes, and a thermomagnetic source term. The gen-
eral set is presented in two-temperature approximation. In Gaussian units, the full
set is given by

qq
qt

þr � ðqvÞ ¼ 0 ð1Þ

qqv
qt

þr � qvv þ ptot �
1

4pm
BB

� �
¼ 0 ð2Þ

qee
qt

þr � ½vðee þ peÞ� � rkerTe þQrad þQJ þQei �Q0
m ¼ 0 ð3Þ

qei
qt

þr � ½vðei þ piÞ� � rkirTi �Qei ¼ 0 ð4Þ

qB
qt

þr � ðvB� BvÞ þ c2

4pm
r� ðgr� BÞ þQm ¼ 0 ð5Þ

Figure 1. Schematic view of LPP device: (a) planar target; (b) droplet target.
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These equations represent the conservation of mass, momentum, energy of electrons,
energy of ions, and magnetic flux, respectively. The variables are the mass density
(q), momentum density (qv), internal energy density (ee) of electrons and (ei) of ions,
and the magnetic field (B). The magnetic permeability (l) was assumed to be 1. The
total pressure has hydrodynamic and magnetic components in this formulation:

ptot ¼ ph þ
B2

8p
¼ pe þ pi þ

B2

8p
ð6Þ

To complete this full set of MHD equations, functions for the thermodynamic press-
ure of electrons pe ¼ pðee; qÞ, resistivity g ¼ gðee; qÞ, and thermal conductivity
ke=i ¼ kðee=i; qÞ are determined from the equation of state, discussed below.

Because the LPP device has cylindrical symmetry, the set of Eqs. (1)–(5) was
adapted for 2-D cylindrical targets. Plasma motion along the / axis is not considered
in this model, and the magnetic field has only one component, B/. Therefore, to sim-
plify the expressions, subscript / of the magnetic field component is omitted from
the magnetic field term. Moreover, the general solution of Eqs. (1)–(5) was separated
into two stages: convective and dissipative. The convective stage provides an
ideal MHD system solution, where only convective fluxes are present. This stage
is given by

qU
qt

þ 1

r

q
qr

½rFðUÞ� þ qPðUÞ
qr

þ qGðUÞ
qz

¼ X ð7Þ

where

U ¼

q

qvr

qvz

ee

ei

B

2
66666664

3
77777775

FðUÞ ¼

qvr

qvrvr

qvzvr

vrðee þ peÞ
vrðei þ piÞ
0

2
66666664

3
77777775

PðUÞ ¼

0

ptot

0

0

0

vrB

2
66666664

3
77777775

GðUÞ ¼

qvz

qvrvz

qvzvz þ ptot

vzðee þ peÞ
vzðei þ piÞ
vzB

2
66666664

3
77777775

ð8Þ

X ¼

0

� B2

4pr
0
Qlas þQrad þQe;th þQJ �Qei �Qm

Qi;th þQei

Qdif þQms

2
66666664

3
77777775

ð9Þ
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The source vector X combines several dissipative terms (sources): laser heat Qlas,
radiation transport Qrad, thermal conductivity Qth, magnetic diffusion QJ and Qdif,
magnetic source Qm and Qms, and electron–ion interactions Qei. The terms are calcu-
lated with the second (dissipative) stage of the HEIGHTS solver and are used as cor-
rectors of the main convective solution. The conservative form of the initial
equations allows the use of the TVD method [6, 7] in the Lax-Friedrich formulation
(TVD-LF) for solution of the convective stage given by Eq. (7). A second-order
TVD-LF scheme does not use a Riemann solver and can be applied to the conser-
vation laws without knowledge of the characteristic waves. The matrix formalism
enables us to change the governing Eq. (7) without significantly modifying the
method. For example, to obtain the two-temperature approximation, the total
energy equation [3, 4] were split, and the elements of the matrixes were extended
to six.

The initial physical model of the LPP device includes a laser heat term of the
electron gas (Qlas term). The electron gas yields the spatial temperature gradient,
which can be nonparallel to the electron concentration gradient. This condition is
necessary for magnetic field generation: the internal energy of the electron gas is dis-
sipative (Qm term) because of the magnetic field creation (Qms term). The magnetic
field generation is equivalent to the plasma internal current produced. The generated
currents heat the electron gas (return energy back) in the Joule heating process (QJ),
which can be expressed as magnetic field diffusion (Qdif term in magnetic field equa-
tion). The model is completed with the thermal electron–ion interactions, which
include the energy exchange between the electron and ion gases (Qei term). Thermal
conduction processes in electron (Qe,th) and ion (Qi,th) gases are also included. The
radiation transport model describes the energy redistribution in the electron gas
(Qrad term) and completes the physical model.

Laser energy deposition is mainly by the inverse bremsstrahlung, since we are
assuming the initial preheating of the target is to 1 eV. In the results reported here,
the classical absorption coefficient (corrected in [13]) was used:

KBS ¼ 16pZ2nenie
6 lnK

3cn2ð2pmekBTeÞ3=2ð1� n2p=n2Þ
1=2

ð10Þ

where ne; ni are the electron and ion concentrations; e is electron charge; Ze is aver-
age ionic charge; c is light speed; me is electron mass; kB is the Boltzmann constant;
Te is electron gas temperature; nP is plasma frequency; and n is laser radiation
frequency [14]. The Coulomb logarithm lnK is given by [15]

lnK ¼ ln
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkBTeÞ3

pne

s
1

Ze3

2
4

3
5 ð11Þ

Reflection of the laser radiation was simulated in the plasma when the plasma
frequency nP equals the arrived frequency of laser light. Heat conduction in the elec-
tron and ion gases included dependence of the coefficients of thermal conductivity
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on the magnetic field [16]:

ke ¼
25niTek

2
B

4beceme

1

1þ ð25X2
eÞ=½beð4be � 9Þc2e �

ki ¼
25niTik

2
B

4bicimi

1

1þ ð6:25X2
i Þ=ðb2i c2i Þ

ð12Þ

where

ce ¼
4

ffiffiffiffiffiffi
2p

p
e4ni lnK

3ðkBTeÞ3=2m1=2
e

ci ¼
4

ffiffiffiffiffiffi
2p

p
e4ni lnK

3ðkBTiÞ3=2m1=2
i

ð13Þ

be ¼
ffiffiffi
2

p
þ 13

4
bi ¼

ffiffiffi
2

p
þ 15

2

Ti

Te

� �3=2
me

mi

� �1=2
ð14Þ

with magnetic field dependences of the cyclotron frequencies Xe=i ¼ eB=cme=i.
The magnetic source term [17, 18],

Qms ¼ � ckB
ene

rne �rTe

was transformed for the cylindrical case:

Qms ¼
ckB
ene

qne
qr

qTe

qz
� qne

qz
qTe

qr

� �
ð15Þ

The decreasing electron internal energy Qm can be calculated from the assumption
that energy of the magnetic field is em ¼ B2=8p. The magnetic diffusion and Joule
heating were determined with the Spitzer resistivity expression [15],

g ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p3me

8ðkBTeÞ3

s
Ze2 lnK ð16Þ

The Joule heating term in the 2-D cylindrical symmetry case taking into account
Eq. (16) can be written as

QJ ¼ c2g
16p2

1

r2
qrB
@r

� �2

þ @B

@z

� �2
" #

ð17Þ

The electron-ion energy exchange was considered as a function of electron and
ion gas temperatures [14, 19]:

Qei ¼ 3
mene
mise

ðkBTe � kBTiÞ ð18Þ

where the time between electron interactions is

se ¼
3

ffiffiffiffiffiffi
me

p ðkBTeÞ3=2

4
ffiffiffiffiffiffi
2p

p
e4Z2ni lnK

ð19Þ

The Monte Carlo radiation transport model has been described in detail [5].
Additionally, we note good applicability of this method to LPP radiation transport
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where two extreme cases are present: an optically ‘‘thick’’ and ‘‘thin’’ plasma. The
developed weight factors method helps avoid difficulties associated with transport
calculations of an inhomogeneous medium.

NUMERICAL METHOD

The convective stage is handled by the ideal MHD system solution, where only
convective fluxes are present. The TVD mechanism was used for calculations of the
convective part. The numerical scheme based on the TVD-LFmethod is given in [3, 5].
We describe in this article the dissipative stage of the combined solution, where the
heat transport and magnetic diffusion terms are included as Q sources in the X vec-
tor of Eq. (7). In analogy to [20], an implicit method on the base of sparse matrixes
was developed for these equations. We used a grid of gradually varying cell size by
imposing unequal grid spacing Dri ¼ riþ1=2 � ri�1=2 and Dzj ¼ zjþ1=2 � zj�1=2 in the r
and z directions, respectively. The subscripts i þ 1=2 and j þ 1=2 refer to quantities
defined on the cell interfaces riþ1=2 and zjþ1=2. Cell centers ri ¼ ðriþ1=2 þ ri�1=2Þ=2 and
zj ¼ ðzjþ1=2 þ zj�1=2Þ=2 are specified at positions ði; jÞ. We used standard notations
for evaluating functions Tn

i; j and Bn
i; j defined at cell centers ði; jÞ and time level n.

We assumed time spacing tn with intervals Dtn ¼ tnþ1 � tn. The spatial derivatives
were approximated at each point ði; jÞ using centered differences with truncation
error of order o ¼ 2.

The heat conduction equation is given in accepted symbols as

q
qt

qcpTðt; r; zÞ � 1

r

q
qr

rk
q
qr

Tðt; r; zÞ � q
qz

k
q
qz

Tðt; r; zÞ ¼ 0 ð20Þ

The plasma properties are assumed to be constant during each time step.
This assumption allows us to consider the first term in Eq. (20) as a constant source,
like Poisson’s equation. We next assumed finite-difference approximations for the
derivation construction replacements:

1

r

q
qr

rk
q
qr

Tðt; r; zÞ
� �

i; j

¼ Cr
1Ti�1; j þ Cr

2Ti; j þ Cr
3Tiþ1; j ð21Þ

where

Cr
1 ¼

2ki�1=2; jri�1=2

ri DriðDri�1 þ DriÞ

Cr
2 ¼ �

2½kiþ1=2; jriþ1=2ðDri�1 þ DriÞ þ ki�1=2; jri�1=2ðDriþ1 þ DriÞ�
ri DriðDri�1 þ DriÞðDriþ1 þ DriÞ

Cr
3 ¼

2kiþ1=2; jriþ1=2

ri DriðDriþ1 þ DriÞ

ð22Þ

Plasma properties on the cell borders are calculated by linear interpolation:

kiþ1=2; j ¼
Drikiþ1; j þ Driþ1ki; j

Dri þ Driþ1
ð23Þ
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Derivation in the z direction is given by

q
qz

k
q
qz

Tðt; r; zÞ
� �

i; j

¼ Cz
1Ti; j�1 þ Cz

2Ti; j þ Cz
3Ti; jþ1 ð24Þ

where

Cz
1 ¼

2ki; j�1=2

DzjðDzj�1 þ DzjÞ

Cz
2 ¼ �

2½ki; jþ1=2ðDzj�1 þ DzjÞ þ ki; j�1=2ðDzjþ1 þ DzjÞ�
DzjðDzj�1 þ DzjÞðDzjþ1 þ DzjÞ

Cz
3 ¼

2ki; jþ1=2

DzjðDzjþ1 þ DzjÞ

ð25Þ

Application of Eqs. (21) and (24) allows the heat conduction Eq. (20) to be pre-
sented as a set of linear equations, where the total number of equations is equivalent
to the total number of useful cells in the domain:

Ai�1; jT
nþ1
i�1; j þ Ai; jT

nþ1
i; j þ Aiþ1; jT

nþ1
iþ1; j þ Ai; j�1T

nþ1
i; j�1 þ Ai; jþ1T

nþ1
i; jþ1 ¼ Di; j ð26Þ

Substitution of Eqs. (21) and (24) into (20) yields linear coefficients A and D
for the heat conduction equation:

Ai�1; j ¼ Cr
1; Ai; j ¼ Cr

2 þ Cz
2 �

cnpfi; jgq
n
i; j

Dtn
Aiþ1; j ¼ Cr

3;Ai; j�1 ¼ Cz
1

Ai; jþ1 ¼ Cz
3 Di; j ¼ �

cnpfi; jgq
n
i; jT

n
i; j

Dtn

ð27Þ

It was assumed that the plasma parameters do not change during one time step;
linear equations include specific heat cnpfi;jg and density qni; j with n time steps. Equa-
tion (26) is a closed system in which the number of unknown values equals the num-
ber of linear equations if the boundary conditions are determined. The temperature
function has no singularity at point r ¼ 0, and the equivalence ðqT=qrÞjr¼0 ¼ 0 can
be taken as a boundary condition by using the symmetry axis as the domain border.

In general, boundary conditions on any border C are given by
akrT jC þ bT jC ¼ f ðT jC; tÞ, where the numerical parameters a and b can specify
the situation at the C border as given heat flux (a ¼ 1, b ¼ 1), given temperature
(a ¼ 0, b ¼ 1), or heat flux as a function of temperature. The simplest case of ther-
mally isolated borders can be realized for the cylindrical geometry as equivalences
ðqT=qrÞjCðr¼constÞ ¼ 0 and ðqT=qzÞjCðz¼constÞ ¼ 0. A more comprehensive discussion
of boundary condition is presented in [21].

Numerical simulation with the implicit scheme is unconditionally stable, and
by using combined schemes, the limiting factor on the time step is usually the explicit
part (convection stage in our case). Ideal MHD calculations demand Courant-
Friedrich-Levi conditions for that explicit algorithm [22]. As the heat conduction
equation, the time-step limiter can be used, Dt � min jðDx2cpq=2kÞj, where Dx is
the minimal cell size.

The magnetic diffusion equation has several exceptions in the finite-difference
scheme. One concerns the behavior of mesh function near the r zero point.
The general structures of the heat conduction and magnetic diffusion equations
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are similar:

q
qt

Bðt; r; zÞ � q
qr

c2g
4pr

q
qr

rBðt; r; zÞ � q
qz

c2g
4p

q
qz

Bðt; r; zÞ ¼ 0 ð28Þ

Similar to Eq. (21), the second term in Eq. (28) is given by

q
qr

g
r

q
qr

rBðt; r; zÞ
� �

i; j

¼ Cr
1Bi�1; j þ Cr

2Bi; j þ Cr
3Biþ1; j ð29Þ

where

Cr
1 ¼

2gi�1=2; jri�1

ri�1=2 DriðDri�1 þ DriÞ

Cr
2 ¼ �

2giþ1=2; jri

riþ1=2 DriðDri þ Driþ1Þ
þ

2gi�1=2; jri

ri�1=2 DriðDri�1 þ DriÞ

� �

Cr
3 ¼

2giþ1=2; jriþ1

riþ1=2 DriðDri þ Driþ1Þ
for ri�1=2 6¼ 0; i:e:; i > 1

ð30Þ

The requirement of the equivalence of left- and right-side derivatives and the
calculation of the limit to zero yield a full description of numerical function behavior
near the singularity point Bjr¼0 ¼ 0,

qB
qr

����
þ
¼ � qB

qr

����
�

lim
r!0

c2g
4pmr

qrB
qr

¼ c2g
2pm

lim
r!0

qB
qr

ð31Þ

Implementation of Eq. (31) conditions into (29) provides coefficients for the
first cell:

Cr
1 ¼ 0 Cr

2 ¼ �
2g3=2; jr1

r3=2 Dr1ðDr1 þ Dr2Þ
þ
4g1=2;j

Dr21

� �

Cr
3 ¼

2g3=2; jr2

r3=2 Dr1ðDr1 þ Dr2Þ
for i ¼ 1

ð32Þ

The z-axis term in the magnetic diffusion equation (28) has no exclusions and
can be derived similarly to heat conduction:

q
qz

g
q
qz

Bðt; r; zÞ
� �

i; j

¼ Cz
1Bi; j�1 þ Cz

2Bi; j þ Cz
3Bi; jþ1 ð33Þ

where

Cz
1 ¼

2gi; j�1=2

Dzj Dzj�1 þ Dzj
� �

Cz
2 ¼ �

2 gi; jþ1=2 Dzj�1 þ Dzj
� �

þ gi; j�1=2 Dzjþ1 þ Dzj
� �h i

Dzj Dzj�1 þ Dzj
� �

Dzjþ1 þ Dzj
� �

Cz
3 ¼

2gi; jþ1=2

Dzj Dzjþ1 þ Dzj
� �

ð34Þ
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Finally, after transformations, the magnetic diffusion equation (28) can be
represented as a linear equation system:

Ai�1; jB
nþ1
i�1; j þ Ai; jB

nþ1
i; j þ Aiþ1; jB

nþ1
iþ1; j þ Ai; j�1B

nþ1
i; j�1 þ Ai; jþ1B

nþ1
i; jþ1 ¼ Di; j ð35Þ

where coefficients A and D are calculated from corresponding the C:

Ai�1; j ¼ Cr
1 Ai; j ¼ Cr

2 þ Cz
2 �

4pm
Dtn c2

Aiþ1; j ¼ Cr
3

Ai; j�1 ¼ Cz
1 Ai; jþ1 ¼ Cz

3

Di; j ¼ �
4pmBn

i; j

Dtnc2

ð36Þ

In the heat conduction case, plasma properties on the cell borders are calcu-
lated by linear interpolation of Eq. (23). Discussion of time steps for implicit mag-
netic diffusion algorithms can be found in [23].

Conditions on the external borders of the domain are determined with physical
processes. Most useful are: current BjC¼ 2I=rc; symmetry qrB=qrð ÞjC r¼constð Þ¼ 0,
qB=qzjC z¼constð Þ¼ 0; and conducting wall BjC¼ 0.

Finally, Eqs. (26) and (35) can be expressed in matrix form as A�U ¼ D, where
A and D are matrixes of coefficients A and D, and U is a matrix of unknown field
(Tnþ1

i; j or Bnþ1
i; j ). We present the matrix expression for the heat conduction equation

in the n�m domain where zero elements are indicated. The linear system is sparse
and five-diagonal. The coefficient matrix is n�m� n�m. In our LPP problem, the
largest grid size was 100 � 200 cells, which produces a coefficient matrix of about
4.0� 108 elements. It is a large sparse matrix containing an extremely large numbers
of zero elements:

A1;1 A2;1 0 0 � � � A1;2 0 0 0 0 0
A1;1 A2;1 A3;1 0 � � � 0 A2;2 0 0 0 0

0 A2;1 A3;1 A4;1 � � � 0 0 A3;1 0 0 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 � � � Ai;j�1 � � � Ai�1;j Ai;j Aiþ1;j � � � Ai;jþ1 � � � 0

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0 0 0 An�2;m�1 0 0 � � � An�3;m An�2;m An�1;m 0

0 0 0 0 An�1;m�1 0 � � � 0 An�2;m An�1;m An;m

0 0 0 0 0 An;m�1 � � � 0 0 An�1;m An;m

2
6666666666664

3
7777777777775

�

Tnþ1
1;1

� � �
Tnþ1
n;1

Tnþ1
1;2

� � �
Tnþ1
n;2

� � �
Tnþ1
1;m

� � �
Tnþ1
n;m

2
6666666666666664

3
7777777777777775

¼

D1;1

� � �
Dn;1

D1;2

� � �
Dn;2

� � �
D1;m

� � �
Dn;m

2
666666666666664

3
777777777777775

ð37Þ
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The structure of the matrix is invariable when linear equations that describe
nonuseful cells (in the case of the complex domain) are removed. Key to efficiency
is to store and operate on only nonzero entries of the matrix. Several mathematic
libraries (e.g., NAG, IMSL, and PARDISO) are used for solution of linear equation
systems with a band or sparse matrix. Calculations for the complex domain need spe-
cial code for implementation of boundary conditions and exclusion of nonuseful
domain areas. If the computational domain does not change during the simulation
time (no motion of any device walls), the best way is to analyze the domain form
before the start of the main program, and to prepare templates of needed matrixes.
In contrast to the explicit algorithm, where it is possible to have a separate module of
boundary conditions, the implicit code requires embedding of the linear coefficients
A and D during construction of matrixes A and D. The dissipative stage fields
Dei; j ¼ qi; jcp i; jf g Tnþ1

i; j � Tn
i; j

	 

and DBi; j ¼ Bnþ1

i; j � Bn
i; j can be considered as dissipat-

ive sources for the ideal MHD solution on each time step. We utilize them as dissi-
pative terms Q in vector X on the right side of Eq. (7).

VALIDATION AND BENCHMARKING

To validate the model and benchmark the code, two test problems were solved
and compared with known analytical results [24]. The first test problem describes
heat transport into the semirestricted computational domain with thermal conduc-
tivity k ¼ k0Ta. The power dependence of conductivity allows analytical solution
of the heat transport problem

qT
qt

¼ q
qz

k0T
a qT
qz

for z > 0; t > 0 ð38Þ

with initial and boundary conditions

Tð0; tÞ ¼ aD
k0

ðz1 þDtÞ
� �1=a

t > 0

Tðz; 0Þ ¼
aD
k0

ðz1 � zÞ
� �1=a

0 < z � z1

0 z > z1

8<
:

ð39Þ

given by

Tðz; tÞ ¼
aD
k0

ðDtþ z1 � zÞ
� �1=a

0 < z � z1 þDt

0 z > z1 þDt

8<
: ð40Þ

Test calculations were performed for the parameter set a ¼ 2, k0 ¼ 0.5,
z1 ¼ 0, and D ¼ 5 on uniform and appreciably nonuniform meshes. Figure 2
presents time-step calculations for the implicit algorithm with uniform mesh and
Dz ¼ 10�2. The heat front at time moment t ¼ 0.1 is shown. The scheme remains
stable for very large time steps. Analytical results and numerical simulation
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solutions for this heat transport problem were satisfactorily fit by Dt� 10�4 with
the implicit method. We also constructed a simple explicit numerical scheme and
obtained similar results to the implicit scheme but only by using time steps smaller
than Dt� 10�6. Larger time steps caused oscillations and numerical scheme distur-
bances. Accordingly, the difference between implicit and explicit time steps is two
orders of magnitude.

The implicit algorithm retains stability by using the appreciably nonuniform
meshes. The evolution of the heat front on nonuniform mesh is presented in
Figure 3. The calculations carried out with time step Dt ¼ 10�4. The analytical
and numerical simulation results compare very well.

The second numerical test investigated the ‘‘stopped’’ temperature wave, which
can be obtained from Eq. (38) at intervals z > 0, and 0 < t < C with initial and
boundary conditions given by

Tð0; tÞ ¼ az1
2k0ðaþ 2ÞðC � tÞ

� �1=a
0 < t < C

Tðz; 0Þ ¼
aðz1 � zÞ2

2k0ðaþ 2ÞC

" #1=a

0 < t < C

0 z > z1

8><
>:

ð41Þ

Figure 2. Heat front distribution calculated with different time steps. Uniform mesh Dz ¼ 0.01. Time

moment t ¼ 0.1.
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The temperature-front evolution in this case is

Tðz; tÞ ¼
aðz1 � zÞ2

2k0ðaþ 2ÞðC � tÞ

" #1=a
0� z � z1

0 z > z1

8><
>: ð42Þ

Analytical and numerical simulation results were compared for coefficients
a ¼ 2, k0 ¼ 0.5, z1 ¼ 0.5, and C ¼ 0.1125. Figure 4 presents calculations obtained
by an implicit scheme with time step Dt ¼ 10�4 on uniform spatial mesh Dz ¼ 10�4.

Our validation of the numerical simulations with analytical results showed
stability and accuracy for artificial problems. However, computation for real devices
is of much more interest in method application. We thus compared results for a dis-
charge plasma device calculated by both implicit and explicit schemes. A detailed
description of the discharge device is given in [5]. Figure 5 includes temperature
and magnetic field distributions around the device electrode at 200 ns after discharge
start. The computational procedure combined magnetic field input with external cur-
rent and excluded the electrode area from the domain. The plasma motion was cal-
culated by the implicit scheme and by substitution of heat and magnetic diffusion
fluxes directly into the MHD explicit scheme [3, 4]. The results obtained by both
schemes compared well. Figure 6 shows crosssections of temperature and magnetic

Figure 3. Heat front evolution. Nonuniform mesh; time step Dt ¼ 10�4.
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fields distributions calculated by both schemes for z ¼ 1.5 cm in Figure 5. The inde-
pendent implicit scheme has a number of advantages over the direct MHD explicit
method. Of vital importance is the ability to use much longer time steps. The curves

Figure 4. ‘‘Stopped’’ temperature wave. Time step Dt ¼ 10�4. Uniform mesh Dt ¼ 10�2.

Figure 5. Plasma parameter distributions around electrode at t ¼ 200 ns: (a) temperature field (eV); (b)

magnetic field (kG).
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in Figure 6 were calculated with time step Dt ¼ 5 ps for the implicit method and
Dt ¼ 5� 10�2 ps for the explicit method. The time step is strongly confined with
heat transport in areas of small plasma density. These areas are usually the back
of the magnetic ‘‘snow plow.’’

The explicit scheme is very unstable in heat transport calculations for rarefied
plasma. Physically, it is possible to explain by consideration of the mechanism of the
thermal conductivity: hot particles transfer energy into neighbor cells, as a result of
chaotic thermal motions.

The explicit scheme works well if the particles can arrive and exchange energy
in the adjacent cells only during one time step. This scheme is not able to consider
energy redistribution in the next nearest cells. The consecutive energy transport is
taken into account. The frequency of particle interactions declines by decreasing
of density, and the time of flight through the cell is appreciably shorter. The explicit
scheme includes nonuseful time steps in the case described. This is related to the
physical concept of the Courant-Friedrich-Levy (CFL) conditions. A similar
unstable situation takes place by consideration of magnetic diffusion during the
stage of plasma compression near the zero point on the radial axis [25].

Additional procedures are needed for damping nonphysical oscillations in the
explicit case. The explicit method allowed us to simulate plasma motion in discharge-
produced plasma devices of several constructions [5]. We note the stability of the
numerical algorithm in combination with other processes of energy or magnetic field
transport, such as radiation transport, thermomagnetic source, and laser beam
interactions.

RESULTS AND DISCUSSION

The energy of the laser pulse was assumed to be 120mJ, delivered in 10 ns
within a 50-mm-diameter focal spot using 1.053-mm-wavelength light. Calculations
were performed for uniform (square) time and space distributions of the laser energy

Figure 6. Plasma parameter distributions along R axis at t ¼ 200 ns: (a) temperature field (eV); (b)

magnetic field (kGs).
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pulse. The power density derived from these parameters is 6.0� 1011 W=cm2. So a
comparable high intensity was used to estimate the influence of the generated mag-
netic field on the plasma evolution and on EUV generation. Figure 7 presents the
magnetic field distributions for Xe targets: (a) 30-mm target droplet and (b) planar
target at 1 ns after laser pulse start. The gray filling shows initial borders for the tar-
gets. Laser beam direction corresponds to Figure 1. The magnetic field maximum is
near 4–6 kGs, and this value will decrease with time. Calculations without taking
into account magnetic field generation were also done. Comparison of the plasma
parameter evolution in both cases revealed that the generated magnetic field does
not account for the visible changes of the plasma temperature, density, and velocity.
Correspondingly, magnetic source and magnetic field equations can be omitted
by consideration of EUV generation with laser power density �1011 W=cm2. The
MHD code can be reconstructed for more efficient working by reduction of the rank
for the operating matrixes.

The EUV radiation was registered within a 2% bandwidth at 13.5 nm. Figure 8
presents typical EUV flux distributions around the droplet Xe and Sn targets. Also
shown are the density distributions at the same time point (9 ns). As expected, the tin
target has higher flux field for the EUV radiation. The time evolution of EUV output
is presented in Figure 9 for droplet targets. The radiation energy was recorded for
the 2p sr solid angle from the laser beam direction. Time integration of the
Figure 9 curves gives the total EUV energy that can be radiated in 2p sr during
one laser pulse. This value is 0.485mJ for the xenon target and 1.252mJ for the
tin target. Integration shows that tin is more effective under selected conditions by
a factor of 2.5.

Figure 10 shows the EUV flux distribution for the planar case. The curves indi-
cate that smaller fluxes can be compensated with larger radiated area. Integration by
time in 2p sr gives 0.958mJ for the Xe target. In contrast to the models which are
now being used for EUV study of LPP devices [26–28], our calculations indicate a
multidimensional character to the plasma radiation processes. The planar target case

Figure 7. Generated magnetic field distribution (kGs) at t ¼ 1 ns: (a) Xe droplet (d ¼ 30 mm) target; (b) Xe

planar target.
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indicates EUV output increasing around the laser spot. In contrast, the droplet tar-
get case shows the EUV radiation peak located in the center of the laser beam axis.
The plasma medium radiates effectively in the restricted spectral band if density and
temperature are optimal. The plasma properties for the LPP device satisfy these con-
ditions in other places, depending on the target geometry and on the laser-radiation
power density distribution in the laser beam.

Figure 8. EUV in band flux field (GW=cm2) at t ¼ 9 ns: (a) Xe droplet (d ¼ 36mm) target; (b) Sn droplet

(d ¼ 36 mm) target.
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The most interesting information for lithography concerns the location and
size of the EUV source. These parameters can be determined from the space distri-
bution of the EUV power capability in the plasma. The EUV power capability is the
radiation in the band output (2p sr solid angle) related to volume unit. Integration by
pinch time and plasma space gives the full EUV energy that can be collected from the

Figure 9. EUV in band output into 2p sr solid angle. Time curves for droplet (d ¼ 36mm) targets.

Figure 10. EUV in band flux field (GW=cm2) at t ¼ 9 ns for Xe planar target.
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source in 2p sr. Figure 11 depicts EUV power capability, electron temperature, and
density along the Z axis (laser beam axis). As shown, the EUV source is a very thin
layer near the current edge of the target. The layer moves during the laser pulse, and

Figure 11. Electron concentration (ne), electron temperature (Te), and EUV capability of space along Z

axis at t ¼ 9 ns after irradiation start: (a) Xe droplet (d ¼ 36mm) target; (b) Sn droplet (d ¼ 36 mm) target.
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time integration gives a wider EUV source form. Figure 12 plots the same para-
meters for the planar case, where EUV space capability is much smaller at the center
of the laser spot.

CONCLUSIONS

We have presented an integrated model to describe the hydrodynamics and
optical processes that occur in LPP devices. The model includes plasma motion pro-
cesses, radiation transport, and EUV output, determined by the weight Monte Carlo
method, laser light absorption, and thermal generation of the internal magnetic field.
A two-temperature approximation was considered. Different sets of opacities for the
MHD and EUV calculations were used: 3,693 spectral groups for Xe and 3,240
groups for Sn in a wide range, and near 2,500 spectral points for Xe and up to
5,000 spectral points for Sn within the EUV region. The developed models and
numerical methods are being integrated into HEIGHTS, a computer simulation
package developed by Argonne National Laboratory. Numerical simulations of
the LPP device with droplet and planar targets showed very small dependence of
the plasma parameters from the thermomagnetic source for laser-radiation power
density up to 6.0� 1011 W=cm2. Correspondingly, the MHD code can be streamlined
in the future for more efficient working by neglecting magnetic field and rank
reduction of the operating matrixes. The HEIGHTS package, after reconstruction,
will be a tool that can be used to study and optimize various LPP source parameters,
such as EUV output, target design, and laser parameters.

Figure 12. Electron concentration (ne), electron temperature (Te), and EUV capability of space along Z

axis at t ¼ 9 ns after irradiation start for planar Xe target.
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