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ABSTRACT 

Extreme ultraviolet (EUV) emission from laser-produced plasmas (LPP) centered at 13.5 nm is considered a leading 
candidate for the light source in future lithography systems. Tin is currently the best material for generating this EUV 
emission since it emits strongly within the 13.5 nm region due to its various ionic states (Sn8+- Sn14+). Highly efficient 
and low-debris LPPs are a pre-requisite for their use as light sources for EUV lithography. Tin plasmas generate debris 
that can damage collection optics over time. Techniques to mitigate debris are needed to extend the lifetime of these 
components and the system. Optimization of plasma conditions is necessary for increasing EUV emission and enhancing 
conversion efficiency (CE). Improving the source CE is necessary in order to reduce the cost of ownership and hence, 
develop a commercially viable lithography system for the semiconductor industry. One method to accomplish this is to 
reheat pre-formed plasma with a laser pulse to enhance EUV emission. This enhancement is achieved by controlling 
those plasma conditions necessary for optimizing EUV emission. We investigated the role of prepulse laser wavelength 
on prepulse plume formation and EUV in-band signal enhancement. A 6 ns Nd:YAG laser operating at 1064 nm and 266 
nm was used for generating the prepulse plume. The expanding plume was then reheated by a 35 ns CO2 laser operating 
at 10.6 μm. The role of prepulse wavelength and energy on EUV conversion efficiency is discussed. 
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1. INTRODUCTION 

EUV light centered at 13.5 nm is currently the leading light source for the next generation of lithography and 
semiconductor manufacturing. The 13.5 nm light has been chosen because of the availability of Mo/Si multilayer mirrors 
exhibiting 70% reflectivity at 13.5 nm within 2% bandwidth.1 Before commercialization of such a system can occur, an 
efficient and low-debris source of 13.5 nm light must be realized. Li, Xe, and Sn have all be considered as sources of 
13.5 nm light.2 Because of its broad emission centered at 13.5 nm, Sn has become the main material of interest for EUV 
lithography applications. Its broad emission is referred to as the Sn unresolved transition array (UTA) and is caused by 
Sn8+- Sn14+ ion transitions. 

The two competing methods for generating 13.5 nm light are discharge-produced plasma (DPP) and laser-produced 
plasma (LPP). Considerable efforts have been made to improve the efficiency and to understand the plasma dynamics 
from these sources.3-5 LPP source research has taken precedence over DPP sources due to its improved scalability for 
high volume manufacturing scanners.3, 6 LPP experiments using Sn have produced high conversion efficiencies (CE) of 
2-5%4, 7, 8 while modeling studies have predicted up to 7%.9 Nd:YAG lasers have been shown to produce high CE,10 but 
in 2005, Tanaka et al.11 demonstrated the advantages of using a CO2 laser for generating higher CE. The CO2 LPP, 
despite producing more energetic ions, has also been shown to produce one-fourth the particle emission and debris 
accumulation than that produced by a Nd:YAG LPP at the same laser energy.12-14 The differences between Nd:YAG and 
CO2 LPP are attributed to the order of magnitude difference in laser wavelength between the two. As the critical density 
of the plasma is related to laser wavelength by nec  ∝ λ-2, the plasma heating mechanisms differ.7 
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The ion dynamics of the Sn plasma were collected using a FC positioned 19.8 cm from the target and at an angle of 25° 
off-normal and biased with a -31 V DC voltage. This data was used to compare time-of-flight (TOF) data of ions and 
was analyzed to provide the energy spectra of the ions. In-band EUV energy was collected using an absolutely-calibrated 
EUV Power Tool at an angle of 45° with respect to the target. The Power Tool consists of two 150 nm Zr filters, a Mo/Si 
mirror, and an EUV photodiode that collects 13.5 nm light within a 2% bandwidth. The EUV CE was calculated using 
the EUV energy over a 2π sr solid angle. Signals from the FC and EUV Power Tool were collected and saved using a 1 
GHz digital oscilloscope. EUV light spectra were obtaining using an EUV transmission grating spectrograph. The 
spectrograph uses a 10,000 lines/mm silicon nitride grating and is connected to a back-illuminated EUV sensitive charge 
coupled device (CCD). 

3. RESULTS AND DISCUSSION 

Our previous studies4, 8 have shown that highest EUV CE from the CO2 laser can be achieved using a laser intensity of 6 
× 109 W/cm2 with a spot size of 225 μm. Therefore, this was approximately the laser intensity used throughout the 
experiments. At this laser intensity, the peak density of the CO2 LPP has been measured4 to be 5.5 × 1019/cm3. This is 
higher than the critical density of a CO2 LPP (9.8 × 1018/cm3). Once critical plasma density is reached, the laser pulse is 
blocked by the plasma and can no longer interact with the target. At this stage in irradiation, laser energy is then 
deposited onto the coronal region of the plasma. EUV photons produced in this coronal region are able to escape the 
plasma without being absorbed by the plasma itself, whereas those produced within the plasma closer to the target 
surface can end up reabsorbed by the plasma itself. In the case of the Nd:YAG LPP, the critical plasma density is two 
orders of magnitude higher at fundamental (9.8 × 1020/cm3) and over three orders higher at fourth harmonic (1.6 × 
1022/cm3) wavelengths than that of the CO2 LPP. Because of the higher critical density, laser energy is deposited mainly 
near the target surface and EUV photons are more likely to be absorbed as they travel through the dense plasma. This is 
the cause of lower CE for Nd:YAG LPP than for CO2 LPP having the same power density. 

The critical density of the LPP must be considered when determining which laser should serve as the prepulse and which 
as the pumping pulse. In our previous report23 we explained that due to critical density differences of two orders of 
magnitude, if the CO2 laser served as the prepulse, a Nd:YAG pumping pulse would penetrate through the pre-plasma 
and interact with the target, rather than the lower-density pre-plasma, and a similar scenario to the single-shot Nd:YAG 
LPP would occur. This would result in dense plasma exhibiting strong self-absorption of EUV photons and a low CE. 
On the other hand, if the Nd:YAG laser served as the prepulse, the dense pre-plasma would be opaque to the CO2 
pumping pulse and CO2 laser energy would instead be deposited onto the coronal region of the pre-plasma. EUV 
photons generated in the coronal region are less likely to be reabsorbed by the plasma and have a higher escape 
probability, resulting in a higher CE. This scenario provides higher CE. 

In our previous study23 we observed an increase in CE of about 40% by using a 1064 nm Nd:YAG prepulse and 10.6 μm 
CO2 pumping pulse. It was found that the increase in CE was dependent on the delay between prepulse and pumping 
pulse and prepulse spot size. The delay between pulses allows for formation of the prepulse plume and its expansion to 
the spot size of the pumping pulse in order to achieve proper coupling between plume and pumping pulse.5 By 
comparing EUV spectra it was found that the increase in CE was due to an increase in intensity of the EUV light as well 
as a broadening of the Sn UTA. However, it was found by comparing Sn ion TOF profiles that only a small portion of 
the pumping pulse was absorbed by the plume. It was hypothesized that by increasing plume density, coupling between 
prepulse plume and pumping pulse could be improved and further increases in EUV emission may be possible. 

In this study we examined the effects of prepulse wavelength on EUV emission for generating a higher-density prepulse 
plume and improving coupling between the plume and pumping pulse. A 10.6 μm CO2 laser with pulse energy of 90 mJ 
and power density of 6.5 × 109 W/cm2 was used throughout the experiment as the pumping pulse. The Nd:YAG laser 
operating at its fundamental (1064 nm) and fourth harmonic (266 nm) wavelengths with an energy of 15 mJ and power 
density of 3.2 × 1010 W/cm2 was used as the prepulse. Spectra and TOF data were taken for the individual prepulses and 
pumping pulse for comparisons. For each prepulse wavelength, a delay range scan was performed to find the delay 
between prepulse and pumping pulse where EUV emission was maximum. At this peak delay time, EUV emission 
spectra and TOF data were recorded. These were compared against the data collected for the individual prepulses and 
pumping pulse shots to determine the cause of increased EUV emission and to identify any differences between using 
fundamental and fourth harmonic Nd:YAG radiation for the prepulse. 
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Figure 2. Dependence of CE on delay time between prepulse and pumping pulse for 266 nm and 1064 nm prepulsed shots. CE from 
the pumping pulse alone is 2.3%. 

Figure 2 shows the delay range scan for 266 nm and 1064 nm prepulsed shots and the resulting CE of EUV. Spatial 
alignment of the pumping pulse with respect to the prepulse plume is crucial. Minute changes in alignment as well as 
focal position of the laser pulse can affect CE and greatly affect delay times23 due to plume expansion and coupling with 
the pumping pulse. The position of the detector and solid angle used to collect EUV emission can also have an effect on 
estimating the overall CE. As can be seen in the figure, the peak delay for the 266 nm prepulse occurs around 2.25 μs at 
3.0%. With a pumping pulse CE of 2.3%, this represents 30% increase in EUV emission. The peak CE for the 1064 nm 
prepulse is also 3.0%, but requires a longer delay, around 3.4 μs. 

While the 1064 nm prepulse requires a longer delay to reach peak CE, both sets of data display similar trends. For short 
delays between prepulse and pumping pulse, CE is very low, but begins to increase with increasing delay. A reduction in 
CE is observed at early inter-pulse delay times (<750 ns). The denser 266 nm prepulse plume shows a greater drop in CE 
than the less-dense 1064 nm plume. After the initial low CE at short delays, CE of both data sets increases gradually 
with increasing delay before reaching its peak. At the peak, the prepulse plume is dense enough to absorb the pumping 
pulse radiation, but is not dense enough to absorb the EUV photons that have been created within the plume and from 
interaction with the target surface. After their respective CE peaks, both sets of data gradually decrease, as the plume is 
dispersed and the pumping pulse interacts mainly with the target surface. 

The optimum inter-pulse delay for both prepulse wavelengths are >1 µs. At the peak delay time, the prepulse plume can 
be expected to contain mostly neutral Sn atoms and small clusters in the cold plasma. Ultimately, the optimum delay 
time depends on many factors to best couple the prepulse plasma with the main pumping pulse to create ideal 
temperature and density conditions to produce, as well as to transmit, the most EUV photons. Therefore, other prepulse 
and main pulse combinations can still exist to produce even higher CE. 

Figure 3 shows time-integrated spectral comparisons between the prepulsed shot spectra at their respective peak delays 
and those obtained for the individual prepulse and pumping pulse. As can be seen in the figure, the use of a prepulse 
both increases the spectral intensity and broadens the UTA for both 266 nm and 1064 nm prepulse spectra. This is the 
cause of the increased CE identified in Figure 2. From the spectra, CE can be understood as the area enclosed by the 
spectra within a 2% bandwidth centered at 13.5 nm. 
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Figure 3. EUV spectral data obtained using a transmission grating spectrograph and EUV sensitive camera for 266 nm (left) and 1064 
nm (right) prepulses at their respective peak delays compared to the individual pumping pulse and prepulse alone. Both prepulses 
resulted in increased spectral intensity and broadening of the UTA. 

The individual 266 nm and 1064 nm Nd:YAG spectra produced negligible EUV emission for the laser intensity used. 
From this it can be concluded that the increase in intensity by using a prepulse is due to the interaction of the pumping 
pulse with the prepulse plume and not from the prepulse’s own emission. The broadening of the UTA indicates that 
additional ionic states of Sn were excited when reheating the plume. As the broadening occurs mainly on the higher-
wavelength side of the UTA, it is the lower-energy ionic states are excited. While broadening within the 13.5 nm in-band 
region is desirable, out-of-band (OoB) broadening worsens spectral purity and should be avoided, as it causes increased 
heat load to collection optics. From Figure 3, a definitive difference between the EUV spectra generated using a 266 nm 
and 1064 nm prepulse cannot be discerned. Both spectra indicate a similar increase in intensity and a broadening of the 
higher-wavelength, lower-energy side of the UTA, producing comparable CE results. 

 
Figure 4. TOF comparison between the individual pumping pulse and the pumping pulse shots fired after a prepulse at their respective 
peak delays. Zero time corresponds to the start of the CO2 laser pumping pulse. By using a prepulse before the pumping pulse, ions 
generated by the pumping pulse are slowed significantly. 

Proc. of SPIE Vol. 8322  83220H-5

Downloaded from SPIE Digital Library on 22 Mar 2012 to 128.46.102.81. Terms of Use:  http://spiedl.org/terms



 

 

Figure 4 shows the TOF comparison between the individual pumping pulse and the prepulsed shots at their respective 
peak delays of approximately 2.25 μs and 3.4 μs after the prepulse for 266 nm and 1064 nm prepulses, respectively. Both 
sets of prepulse data display two significant features. The first feature is a slow rise in the signal that levels off. This part 
of the signal corresponds to ions that were excited within the prepulse plume by the pumping pulse. The second feature 
is the peak at about 21 μs for the 266 nm prepulse and around 24 μs for the 1064 nm prepulse. This peak corresponds to 
the ions excited by the pumping pulse interacting with the target. 

For EUV lithography systems, Figure 4 provides important insight. Highly energetic ions and other forms of debris from 
Sn plasma are a major consideration in the design of a lithography system. These ions cause significant sputtering 
damage and interlayer mixing of multilayer collection optics. Methods to reduce debris and lower kinetic energies of 
debris will be necessary for commercialized systems. This figure shows a significant slowing-down of Sn ions from the 
pumping pulse. The ion flux of the individual pumping pulse peaks at about 3.1 μs, while the flux peaks in the prepulse 
data occur 21 μs and 24 μs after the pumping pulse for 266 nm and 1064 nm prepulses, respectively. As kinetic energy is 
proportional to t-2, this slowing down of Sn ions represents a substantial decrease of the most probable ion energies. The 
ratio of these ion kinetic energies can be expressed as 1 : 0.022 : 0.017 (pumping pulse: 266 nm prepulse: 1064 nm 
prepulse). This is a reduction in most probable kinetic energy of nearly two orders of magnitude, greatly mitigating the 
sputtering and interlayer mixing damage of optics by these Sn ions. It is important to note that total ion fluence, albeit 
consisting of lower energy ions, is roughly 2.65 times greater for the prepulsed plasmas than for the individual pumping 
pulse plasma. This is due to the ions produced by the prepulse and those in the prepulse plume that are reheated by the 
pumping pulse. Despite their higher fluences, the less energetic ions found in prepulsed plasmas are much easier to 
mitigate by use of electric and magnetic field techniques. 

4. CONCLUSION 

In this report a detailed study of the effect of different prepulse wavelengths for EUV lithography systems was 
conducted. Wavelengths of 266 nm and 1064 nm prepulses from a Nd:YAG laser were used to generate a plasma plume 
from a planar Sn target. The plume was then reheated by a 10.6 μm CO2 laser pumping pulse to generate EUV emission. 
The delay time between prepulse and pumping pulse was varied for each prepulse wavelength to identify the delay in 
which peak CE was realized. It was found that both prepulse wavelengths produced similar EUV emission 
improvements of 30%, albeit at different delay times due to differing plume expansion velocities. Trends in the delay 
range data were also similar between both prepulse wavelengths, but were more drastic for the 266 nm prepulse. EUV 
emission spectra were then analyzed to determine the cause of the increased CE. At their respective peak delays, spectra 
from both prepulse wavelengths showed an increase in emission intensity as well as a broadening of the Sn UTA on the 
lower-energy, higher-wavelength side. A definitive difference from spectra between the two prepulse wavelengths 
cannot be discerned. TOF profiles of Sn ions indicated a substantial slowing down and hence, reduction in kinetic energy 
by nearly two orders of magnitude for both prepulse wavelengths when compared to that of the individual pumping 
pulse. While total ion fluence was greater with the implementation of a prepulse, the substantial decreases in kinetic 
energy provides for easier debris mitigation through the use of electric and magnetic fields. This can lower the damage 
to collection optics by energetic ions. 

With this information it appears there is no substantial difference between the implementation of 266 nm and 1064 nm 
prepulses. Similar CE was realized from both prepulse wavelengths, although the 266 nm prepulse require a 1 μs shorter 
delay to achieve this. The EUV spectral features were similar for both prepulse wavelengths. Ion TOF data showed that 
ionic debris from the 1064 nm prepulse was slightly less energetic than that from the 266 nm prepulse, but this 
difference is minor compared to the decrease in ion kinetic energies afforded by both prepulses when compared to 
kinetic energies produced by the individual pumping pulse. 
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