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The time dependent heat conduction equation is solved in
different coordinate systems is solved subject to various
boundary conditions. These boundary conditions include sur-
face heat flux, energy to vaporization of target materials,
radiation from surface to surrounding, and possible phase
change of material. This system of equations is subject to
two moving boundaries. One moving boundary being the melt-
solid interface because the surface heat flux may result in
melting the surface of the exposed material. Another moving
boundary is the receding surface as a result of evaporation of
the wall material due to the continuous heating of the melted
surface. Both the finite difference and the finite element
methods are used and compared in such solution to these pro-
blems. Physical applications to these problems include high
energy deposition from electron or ion beams interaction with
materials for space and weapons applications, plasma disrup-
tion and energy dump on the walls or components of a fusion
reactor, aud high energy laser welding and annealing of
materials.

2. INTRODUCTION

Most moving boundary or Stefan problems (such as those
discussed by Oziski [1], Muehlbauer and Sunderland [2] and in
recent conferences [3,4]) deal with melting, solidification,
or boiling, where the interface is mathematically character-
ized by a fixed value of the temperature. The present problem
of intense evaporation involves a highly nonlinear boundary
condition for the surface temperature whose determination is
now an integral part of the solution for the entire problem.

Because of this added complication, previous treatments
of intense evaporation were based on various simplifying as-
sumptions regarding the condition at the moving boundary.
Ready [5] assumed that evaporation begins and proceeds at a
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constant—boiling -temperfiifiarreirftililqfflgttJaee laaer—pul-se—duration—is
Large compared to the preheat time for reaching the boiling
point. On the other hand, Ready [6] assumed for irradiations
with Q-switched lasers the" the vapor will be superheated to
the critical point, and that the evaporation rate is deter-
mined by the thickness of material heated beyond the critical
point.

| Andrews and Atthey [7] developed a convenient analytical
I spli^f i(pnp/̂ q: Rt|h^R[evaporat ion problem when it can be assumed
•that vaporization occurs at a constant boiling point. This
s^^^i/pnjj^aSg^een used earlier by Loebel and Wolfer [8] to!
estimate the erosion by vaporization of various first wallj
• a^r^r^a^s- ^.we;^,, melting w a s neglected in this approach.!
iBehnsch 19] has evaluated the evaporation due to heat pulsesj
when the energy expended for both melting and evaporation is;
negligible compared to the total energy deposited. i
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All the above treatments avoid the central problem, name-'

ly. that the rate of evaporation into a vacuum and the associ-;
"Gl3rt text '.f.rn . .

ated surface temperature are entirely determined by the kine-i
tic processes involved in the vaporization, and by the energy;
partitioning between heat conductions, melting, evaporation, j
recondensation, and radiation. ;

Few attempts have been made to solve, in its entirety,
this problem of evaporation into a vacuum. Osadin and!
Shapovalov [10] derived an integral equation for the surface
temperature by neglecting melting and the receding motion ofi
the evaporating surface. Golodenko and Kuz'michev [11] in-
cluded the boundary motion in an approximate manner, but melt-
ing was again neglected, and constant thermophysical proper-
ties were assumed. Furthermore, no recondensation was
included in any of the treatments.

More recently, several researchers [12-14] have carried
out numerical studies on evaporation and melting during plasma
disruptions, using similar models for evaporation as developed
by tne author [15-17].

In this paper however the numerical methods used in the
solution of this two moving boundaries problem is discussed in
detail, using boLh finite difference and finite element tech-
niques. Several applications for this system of equations are
also discussed. One application is due to intense energy dep-
osition on the plasma chamber wall and its components in mag-
netic fusion devices. The energy deposited on part of the fu-
sion reactor wall could exceed several hundred MJS with depo-
sition times in the millisecond (ms) range or even shorter.
The material behavior under this severe condition and the
amount of material lost due to erosion from vaporization and
melting is very unportant for the successful operation of a
fusion reactor. Another app'liicati'on of this system of equfl-
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is~to estimate— tISejriridietalfiegechireinjected-small —spheric-a-l
pellets of solid material, into the plasma edge to be vaporized
and redeposited as coating or trapping material on part of the
fusion reactor components.

3 . FORMULATION OF THE PROBLEM

Although the above problem is solved in different coor-
dinate systems such as one dimensional cartizian, one diinen-
ai^ng^fsp^iejriic^i^g: and two dimensional axially symmetric cylin-
derical coordinates, the discussions in this paper for simpli-
c$J$o,wi4JLn,jaa,i,£ly be oriented towards the one dimensional car-
tizian coordinates. The general time-dependent one-dimension-
a4ulbnelaitAtcjpJndiy4.cjtljip1niewith thermophysical properties K, p, C ofj
the material vary with temperature is given by: j

3T

f
3T

x < L, t > 0 (1)

Start (i.-i. • M e -

T(X,O) = f(xj L, t = 0 (2)

where f(x) is the initial temperature distribution function.
The developed computer code can also handle a volumetric heat
generation source term Q(x,t) added to Eq. (1).

The correct boundary condition requires partitioning of
the incident energy into conduction, melting, evaporation, and
radiation. Thus the total input heat flux q(t):

q(t) =

where

q + q (3)

q = conduction heat flux
c

3T
= K(T) — I

3x x=0

q = v a p o r i z a t i o n h e a t f l u x = p f l " 1 L v f T 1
v v v v

(5)

q = radiation heat flux
r = to - T ]

a '
(6 )

where T.y = T(x = 0, t) is the surface temperature, L is the
heat of vaporization, v(Ty) is the velocity of the receding
surface, o is the Stefan-Boltzmann Constant, e is the emis-
sivity of the target material, and Ta is the ambient tempera-
ture of the surface not exposed to the energy dump but in dir-
ect line of sight of the exposed surface. Then the boundary
condition at the surface can''be'-"written as
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'x=0

Once melting commences, the condensed phases of the wall
or target material define two regions .Fig. 1): s(t) < x <
m(t), and the solid phase in the region x > m(t). Here, m(t)
is the instantaneous position of the melt-solid interface.
The boundary condition at the melt-solid interface is now

PAPER 31ERF:
• = P L, w(t) at x = m(t) (8)
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w(t) - f jT , (9)
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is the velocity of the moving interface and Lj is the latent
! h&§£ te°.£hefi.usi-on- ^ne subscripts s and I refer to solid and
j liquid phases respectively. The thermophysical properties of
1 both solid and liquid phases are different and assumed to vary
j with temperatures by polonominal functions. I
; i

! There are several ways of accounting for the moving bounj
dary at the surface due to the evaporation of the wall materiy
al. One way is to introduce a coordinate frame which moves

! with the receding surface. Hence, in a frame

i

t
; z(t) = x - / V(T) dt (io)

o

i

The surface remains at z=0, but the heat conduction equation
'. transforms into

pC §• - PC v(T) |£ = |- [K(T) |^] (LI)
p dt p dz 3z L 3zJ

which differs from the original equation by the convective
term pCv(T) 8T/3z. All boundary conditions retain their ori-
ginal form given above, and only 9T/3x is replaced by 3T/3z.

The velocity of the receding surface, i.e., v(T) is a
highly non-linear function of temperature. A review of the
model used to calculate the evaporation losses is given in
Ref. [15], In this model, the surface velocity is highly non-
linear function of surface temperature and is given by ;

a/A P (T ) -t/10 T
= 5.8x10 2 v---y-|'-I[l0l:i8»-0-.2-e-- c-l cm/sec (1-2)

P(T ) /r - •• J

^ v
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a = sticking probability (Ml)
A - atomic mass number of target material
P = vapor pressure of target material (Torr)
x = vapor collision frequency (sec )
c

Another way of accounting for the receding surface due to
vaporization is to solve Eq. (1) without introducing the mov-
ijngLEfOOTJeAWEfe frgtference. However the temperatures after each
time step have to be modified by simple gradient correction
t«dWor|s<Naa<eo.$uPt f ° r t n e loss of material in this time step.
Thus avoiding the complications of additional term in the heatj

i i j

A third way to account for the recession of the surface
is to use zone elimination techniques. In this method the

each time step until i t s thickness apMff§fr ! z§£Sl!$j lFfeF§ m aH e r each time step until its thickness a p j
proaches -t small value. The first zone is then eliminated and

j tfeftrAfCAnd zone becomes the first and so on. The advantage of,
I the above two methods over this one is that the total number!
I of zones remains constant, however, each zone is reduced by a
j factor at each time step. For a matter of illustration the-
|first method is used with the finite difference solution and
j the second method is used with the finite element representa-
i tion of the heat conduction equation.

i
•3.1 Phase Change

: When the temperature of a node reaches the melting tem-
perature of the material Tm, then this node temperature is
fixed until all the heat of fusion is absorbed. Then the teiu-
: perature of this node is allowed to change. During the phase
change the material properties of the node is given by a com-
:bined value from both solid and liquid properties according to
:the ratio of the transformation at this time step.

4. FINITE DIFFERENCE SOLUTION

There are several schemes available to express the time-
dependent heat-conduction equation in finite difference form
ranging from the so-called explicit form to the fully implicit
form. Each of these differencing schemes has its advantages
and limitations. The finite difference scheme used in solving
, the above heat conduction equation is based on the modified
implicit method of Crank-Nicolson [16]. However, the nature
of this particular problem and the highly non-linear boundary
condition and the presence of low-order terms in the heat
equation may force one to use a smaller vaLue of At.

The space is divided into N interval mesh points and the
interval spacing may be non-uniform and is chosen such that it:
- ' - Last iim; here
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i.^-8u£f iciently—sroaH- rffeatt natreal emefoece uf the material—where
evaporation and melting is expected to occur (Fig . 2 ) .

The f i n i t e difference representa t ion of Eq. (11) is then
;iven by

PJCP
J J

AT
TITfcfcOF PAPER HERE
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FIRST
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V J

l r T n n - l I ±.fTn J. T11"^ 1
yEf^LVl V l J " 2lTJ+l+ TJ+lJ
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jj
- . ! - AXj)

here

(13)

yi = n l J-l
Jj- i /2

 KJ-l/2 AT

.n
J-l/2

KKJ-1

J-l

Arithmatic mean

Harmonic mean

(14)

(15)

n n
VJ = V(J=0)

JN " J

N
(16)

; The governing equation in a tridiagonal system of
equations can be written in the form:

(17)

where Che coefficients are given by

K
J-l/2

(18)
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5. BOUNDARY CONDITIONS

Similar equations for surface J=0 and N can be written
down based on the boundary conditions of that node. The
boundary condition used at the surface J=0 is given by

K(T) -P- 1 . = q ,. (22)
3x x=0 Hnet

where

At Che other boundary J=N several boundary conditions can be
employed in the code such as radiative, convective, or
isolated boundary condition, i.e. ,

For a radiative B.C.

K(T) - | i I = -ea(TjJ - T*) , (24)

For a convec t ive B.C.

K(T) -— I = h(TH - T ) (25)
3x x=L v N c '
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where h is the heat trrfhs'fattr'C'detffiteient of the fluid used to
cool the wall and T is the coolant temperature.

!For an isolated B.C.

( 2 6 )

i 11 TLEThfePgoverning equation and the coefficients for the tri-
diagonal matrix can similarly and easily be obtained for each'
boundaryjacondit ion.

AuthcAn Aiimpltioitn^alternating direction method suggested by
Peaceraan and Rachford [17] is used to solve the two-dimension-
al problem. This method is only valid for linear equations,
but may be used here by transronning the nonlinear system (ma-
teniailH ip^oper ties, boundary conditions and zone thicknesses
may be temperature or time-dependent) into a quasi-linear sys-
tenLrlin..; which the nonlinear coefficients are frequently re-
evaluated.

6. FINITE ELEMENT SOLUTION

Using variational calculus the differential Eq. (1) and
the boundary and initial conditions are transformed into a
functional I defined as

j W P f / ql / q2Tds '(27)
v v si s2

The solution is achieved by minimizing the above equation with
respect to teraperacure, which yields

[K] {T} + [C] •sj±L + {F} = 0 , (28)

where

[K] = global stiffness matrix
[C] = global capacitance matrix

I TJ = global temperature vectorFj = global force vector.

The time derivative of Eq. (28) is approximated by using a
central difference scheme such that

[A] (T}n = [B] {T}H-1 _ (F|0-lf (29)

where

[A] = [[K] + -~ [C]] (30)
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(31)

iFor a one-dimensional linear element and for the same geometry
j(Fig. 2) and the same boundary and init ial conditions, the
(matrices are defined as

I I VI.E UK P A l ' L i i d t H t

A 11ho, \ A<-.j, i i_'Tm,i:,; i !•_!
(pjCp Axj + P J + 1C p Ax J + 1)

[ c J ]= ^ n ^ [J J] (33)

fqr,,. the consistent formulations, or

(p j C p Axj + P j + 1 C p Ax J + 1)

[CJ]= 3~ 5 ^ [J J] (34)

for the lumped formulations.

The value of the force vector is dependent on the boun-
dary conditions imposed on that particular element. For exam-
pie, the force vector for the first element containing nodes 1
and 2 is

{F} = C11^} (35)

where q is given by Eq. (23). The value of the force vec-
tor of the last element is also dependent on the boundary con-
dition used for that element. All the other internal force
vectors are equal zeros for this particular problem, unless
there is a specified volumetric heat generation rate.

After each time step the temperatures throughout the tar-
get have to be corrected for the loss of material at this time
step. The corrected temperature for node j, T-, is simply
given by ^

8T
T C = T n - -r-J- 5x. (36)
J J 9 xj J
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where 6x. is the reduct&0hnii'rtwthii<ifcri'ess of zone j due to tlfe
(evaporation.
I
!7. APPLICATIONS

17.1 High Energy Deposition oa Target Materials

Disruptions in magnetic fusion reactors lead to high
[energy deposition for short times on in-vessel components
Melting land: revapor at ion may then occur. An accurate predic-
tion of these quantities require the solution of two moving!
bouindariesirf discussed above. Table 1 shows the thermal re-j
sponse and the resulting vaporization and melt layer thick-'
n,es,s,e:Ss ca.l.culatedieby both finite difference and finite element!
methods for two candidate materials, vanadium and stainless'
steel. The calculation is done for an energy density of 1000:
J/cm deposited in two different times of 10 and 50 ms. The!
agE^era^n^iib.etweeQu the finite difference and the finite element!
is very good. Vanadium yields less vaporization than steel'
bec.aus.e. of. its lower vapor pressure. It can also be seen that'
the energy expaned in vaporization is much more than that lost
due to radiation. Higher energy lost to vaporization means
less energy available for conduction to cause melting [20-21].
Longer deposition times allow more time for the energy to be'
conducted away from the surface and hence less energy to
produce vaporization but may cause more melting.

7.2 Vaporization of Small Spherical Pellets

Another application ior the solution of the two moving
boundaries problem is to calculate the lifetime of spherical
metallic pellets, injected into the edge of a plasma "scrape-
off region" to be vaporized and redeposited for coating pur-
poses. The heat flux in this particular application is not
extremely high (=2-4 MW/nr) thus the pellet vaporization can
be approximated and treated as a heat transfer problem rather
than a complicated hydrodynamic problem [23].

The heat conduction equation in spherical coordinates is
given by

p C |I=Kd!r+i!idT (37)
p at , 2 r dr

dr

The instantaneous radius of the injected pellet can be given

as

t
:(t) = R - / V(T) dt (38)

0 o

where
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R = pellet radius at t = 0
V(T) = velocity of the eroding surface (Eq. 12).

The boundary condition on the pellet surface can also be given
by Eq. (7), while the boundary condition at the origin is
similar to that of Eq. (26). I

| The solution methods and procedure is similar, to che one-]
idi/raensional'icaritjizian coordinates and will not be discussed in)
idetail here. The pellets are dropped in a constant heat fluxl
reg-UMi; wherei.ifcheir temperature starts rising to cause melting;
,and vaporization. The lifetime (time for complete vaporiza-!
itipn^i pjf|)!the.iupe;lil.et is determined when the radius is reduced,
to less than 0.5% of its initial value as a result of the con-1

tinuous erosion of surface material, then the calculation is,
stopped. The heat flux is assumed uniform on the whole sur-
face p£;i-t,he'.,pe.llet.

^,dl. As. an.example the time for complete melting and the life-
time of the pellet for both vanadium and steel is shown in
Table 2. Two heat fluxes of 2 MW/m2 and 4 MW/m2 are consider-
ed. The initial pellet radii is taken to be 100 u and the
emissivity of both materials are assumed to be one. The pel-
let lifetime is linearly proportional to the pellet radius.
The calculation shown is done by the finite difference meth-
od. The time for complete melting is much shorter than the
lifetime. An interesting point to mention that most of the
energy supplied to the pellet is lost in radiation in contrast
to the previous application where most of the energy lost in
vaporization. This is mainly because of the geometrical con-
figuration of this particular problem. As a result any de-
crease in emissivity of the material will substantially reduce
the lifetime. This is because lower emissivities means less
energy lost by radiation and consequently higher surface tem-
peratures which result io higher evaporation.

7.3 Electron or Ion Beam interaction with Materials

Simulation experiments of high energy ion or electron
beam interaction with materials and the resulting thermal ef-
fects is modeled by solving the time dependent heat conduction
equation in axially symmetric cylinderical coordinates (r,z).
Wh-jre r is the radial distance measured from the center of the
beam and z is the coordinate normal to the sample surface with
origin at the surface. This equation is given by [20]

3 T • 3 , 9 T ' (39)

at

Equation (39) is solved using the same procedure discussed
above except it is done in two dimensions. The boundary con-



Table 1
Thermal Response of Vanadium and Stainless Steel

by Finite Difference (FD) and Finite Element (FE) Methods
Energy Deposited 1000 J/cro , Initial Wall Temperature 300*C

A ,

Parame ters

Maximum Surface Temp. (°K)
Vaporization Thickness (u)
Melting Thickness (M)
Z Energy in Vaporization
X Energy in Radiation

10 tns Deposition Time
Vanadium
FD

3800.1
78.89
286.4
45.41
.151

FE

3801.1
79.25
286.7
45.61
.152

Stainless Steel
FD

3287.72
157.3
204
66.37
0.085

FE

3287.95
157.4
204
66.39
0.085

50 mB Deposition Time
Vanadium
FD

3246
14.82
432.9
8.53
3.?.5

FE

3248.6
15.14
448.8
8.72
3.2/

Stainless Steel
FD

2864.6
8i.4O
364.85
37.13
2.26

FE

2865.45
81.56
365.26
37.20
2.26

Table 2
Finite Difference Solution for Spherical Pellet's Lifetime Calculations

100 u Pellet Radii, 300°C Initial Temperature

Heat Flux

" Material
Parameter • —^^

Maximum Temperature (°K)
Time for Complete Melting (ms)
Time for Complete Vaporization (s)
% Energy in Vaporization
% Energy in Radiation

2 MW/m2

Vanadium

2405
28
36
7
93

Stainless Steel

2142
24
6,1
41
59

4 MW/m2

Vanadium

2650
13.4
4.4
31
69

Stainless Steel

2270
11.7
2.0
63
37
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ditions are also similatortairthepiqine-ndimensional case with-the
input heat flux may vary radially along the surface of the

i target, i . e . ,

i qCr.t) = - * ( T ¥ ) g + p(Tv)v(r,T)Lv + oc^ - T*) (40)

1

i It is found that the vaporization and melting of the tar-:
getiisifirong'lŷ  (depends on the characteristics of the beam spa-;
tial distribution, beam diameter, and on the time variation of
theh,beam.|1£Qyer [20]. As an example the maximum surface tem-;
perature rise (i.e., at the center of the beam) is shown in
F&gi,nr{3Q,.H£q!mi&9£kieCopper and steel for an energy density of
800 J/cra* deposited in 50 m? [20]. The temperature rise is
shown for different flat beam diameters. For beam diameters
>1 mm the steel surface temperature is much higher than that
for,scopper,Na,nd;.[the steel stays in the liquid phase for about
100 ms. Lateral conduction along the beam surface is very im-
portant .for smaller beam diameters as it can be seen for the
copper case where it does not melt for beam diameters around 1
mm compared to the 3 mm beam diameter case, where about 360
microns of the copper is predicted to melt.

8. CONCLUSIONS

The time dependent heat conduction equation is solved
with two moving boundaries in different coordinate systems
subject to various boundary conditions. The first moving
boundary is the receding surface as a result of evaporation of
surface materials. The second moving boundary is the raelt-
solid interface due to the change of phase in the material.
The boundary conditions include surface heat flux, energy to
vaporization, radiation from the surfaces and phase change.
Both finite difference and finite element methods are used in
the solution and show good agreement. The solution developed
in different coordinate systems has several important applica-
tions in space, fusion reactors, and weapons research, involv-
ing high energy deposition and interaction of different radia-
tion with matter.
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