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1. ABSTRACT DES8 002867

“\Tﬁe'iiﬁéldéﬁéndent heat conduction equation 1s solved in
different coordinate systems 1is solved subject to wvarious
boundary conditions. These boundary conditions include sur-
face heat flux, energy to wvaporization of target materials,
radiation from surface to surrounding, and possible phase
change of material. This system of equations 1s subject to
two moving boundaries. One moving boundary being the melt-
solid interface because the surface heat flux may result in
melting the surface of the exposed material. Another moving
boundary is the receding surface as a result of evaporation of
the wall material due to the continuous heating of the melted
surface. Both the finite difference and the finite element
methods are used and compared in such solution to these pro-
blems. Physical applications to these problems include high
energy deposition from electron or ion beams interaction with
materials for space and weapons applications, plasma disrup-
tion and energy dump on the walls or components of a fusion

reactor, and high energy laser welding and annealing of
materials.

2. INTRODUCTION

Most moving boundary or Stefan problems (such as those
discussed by Oziski [l], Muehlbauer and Sunderland [2] and in
recent conferences ([3,4]}) deal with melting, solidification,
or boiling, where the interface is mathematically character-
rzed by a fixed value of the temperature. The present problem
of Lntense evaporation involves a highly nonlinear boundary
condition for the surface temperature whose determination 1is
now an integral part of the solution for the entire problem.

Because of this added complication, previous treatmencs
of ilntense evaporation were based on various simplifying s~
sumptions regarding the condition at the moving boundary.
Ready [5] assumed that evaporatiom begins and proceeds at a
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cnnstant~b01110g temperﬁmunmnVangihseIaser—pulse—durﬂtton—ts
large compared to the preheat time for reaching the boiling
point. On the other hand, Ready [6) assumed for irradiafions
|with Q-switched lasers thz: the vapor will be superheated to
the critical point, and that the evaporation rate is deter-—
mined by the thickness of material heated beyond the critical
point.

‘ Andrews and Atthey [7] developed a convenient analytical
|salutignpAiq: ptibereevaporation problem when it can be assumed
fthat vaporization occurs at a constant boiling point. This
' RIBEIOR, AAB, peen used earlier by Loebel and Wolfer [8] tol
’estlmate the erosion by vaporization of various first wall

| EEP?L5<NHHQHFMS§. melting was neglected in this approach.
Behrlsch has evaluated the evaporation due to heat pulses
when the energy expendad for both melting and evaporation 1is;
:negligible compared to the total energy deposited. i
|
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All the above treatments avoid the central problem, name-!
1%rnP§E the rate of evaporation into a vacuum and the associ-,
ated surface temperature are entirely determined by the klnet
tic processes involved in the vaporization, and by the energy
partitioning between heat conductions, melting, evaporation,
recondensation, and radiation. :
Few attempts have been made to solve, 1in its entirety,
this problem of evaporarion into a vacuum. Csadin and
Shapovalov {10] derived an integral equation for the surface
temperature by neglecting melting and the receding motion of
the evaporating surface. Golodenko and Kuz'michev [1l1] in-
cluded the boundary motion in an approximate manner, but melt-
ing was agaln neglected, and constant thermophysical proper-—
ties were assumed. Furthermore, no recondensation was
included in any of the treatments.

More recently, several researchers (12-14] have carried
out numerical studies on evaporation and melting during plasma

disruptions, using similar models for evaporation as developed
bty tne author [15-17}.

In this paper however the numerical methods used in the
solution of this two moving boundaries problem is discussed in
detail, using boch finite difference and finite element tech-
niques. Several applications for this system of equations are
also discussed. One application is due to intense energy dep-
osition on the plasma chamber wall and its components in mag-—
netic fusion devices. The energy deposited on part of the fu-
sion reactor wall could exceed several hundred MJS with depo-.
sition times in the millisecond (ms) range or even shorter.
The material behavior under this severe condition and the
amount of material lost due to erosion from vaporization and
melting is very Limportant for the successful operation of a
fusion reactor. Another- applicdtion- of this system of equa-
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ions--is—to est1mate—tﬁhu&mfumiuqmmémln]ected small-ﬂpherxckl
pellets of solid materis. into the plasma edge to be vaporized

and redeposited as coating or trapping material on part of the
fusion reactor components.

3. FOGRMULATION OF THE PROBLEM

Although the above problem 1s solved in different coor-
dinate systems such as one dimensional cartizian, one dimen-
mepabspharpeal,e and two dimensional axially symmetric cylin-
derical coordinates, the discussions in this paper for simpli-
lq&ﬁxmw;d}nna&gly be oriented towards the one dimensional carq

‘tizian coordinates. The general time-dependent one-dimension

P ad, hgata sendugtinpwith thermophy51cal properties k, p, P oq
‘the material vary with temperature 1s given by: |

|
!
BT aT }
] S
S0t teat g, :
T(x,0) = £(x) 0<x<L,t=20 (2)!

where f(x) is the initial temperature distribution function.!
"The developed computer code can also handle a volumetric heat
‘generation source term Q(x,t) added to Eq. (l). ‘

The correct boundary condition requires partitioning of
the 1ncident energy into conduction, melting, evaporation, and
radiation. Thus the total input heat flux q(t):

(t) = * + “
q Q. v a9t (3)
where
q, = conduction heat flux = K(T) — -0 4
q = vaporization heat flux = p(T ) L viT ) (5)
v v v v

I } ho Lk

q radiation heat flux = eo (T - T ) (6)
r v a

where T, = T(x = 0, t) is the surface temperature, L, 1s the

heat of vaporization, v(T ) is the velocity of the receding
surface, o 1s the Stefan-Boltzmann Constant, € is the emis—
sivity of the target material, and Ta is the ambient tempera-
ture of the surface not exposed to the energy dump but in dir-
ect line of sight of the exposed surface. Then the boundary
condition at the surface caa“'le“written as -
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Once melting commences, the condensed phases of the wall
or target material defime two reglons ‘Fig. 1):  s(t) < % §
m(t), and the solid phase in the region x » m(t). Here, m(t)
is the instantaneous position of the melt-solid interface.
The boundary condition at the melt-solid interface is now

TITLHDF PAPER 3!}':‘@!:':
k 3 =i - P Lf wit) at x = m(t) (8)
Austhouxs Name [g‘ereK

where's Appointment Here
dm
- cdno 9)
W( t) dt > (
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,is the velocity of the moving interface and Lg is the latent
i heak te@frnefusion. The subscripts s and £ refer to solid and
‘11qu1d phases respectively. The thermophysical properties of
;both solid and liquid phases are different and assumed to vary
!

with temperatures by polonominal functions. i
[

H 1
! There are several ways of accounting for the moving boun;-
dary at the surface due to the evaporation of the wall materis
al. One way is to introduce a coordinate frame which moves
with the receding surface. Hence, in a frame

t
z(t) = x - f v(T) dt (L0)

o]

! . . .
The surface remains at z=0, but the heat conduction equation
transforms into '

o o _ pva(T) LA

aT ‘
b Bt = o7 k(D) 5] (11}

" which differs from the original equation by the convective
term pCv(T) 3T/3z. All boundary conditions retain their ori-
ginal form given above, and only 3T/3x is replaced by 3T/9z.

The velocity of the receding surface, i.e., v(T) is a
highly non-linear function of temperature. A review of the
model used to calculate the evaporatioa losses 1s given 1in
Ref. [15]. 1In this model, the surface velocity is highly non-
linear function of surface temperature and is given by

‘ 9 oA P (T ) -t/10 =
v(e) = 5.8x107 7 —=e=tetniguggy o €] cm/sec  (12)
o(1,) T, e
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where Start normal page here ————— - e o e
o« = sticking probability (=1)
A = atomic mass number of target material
P, = vapor pressure of target materifl (Torr)
T, = vapor collision frequency (sec V)

)

Another way of accounting for the receding surface due to
vaporization is to solve Eq. (1) without introducing the mov—
img L oswearsh: weference.  However the temperatures after each
time step have to be modified by simple gradient correction
termockavaagaaupt for the loss of material in this time step.
Thus avoiding the complications of additional term in the heat
canducs ppoitarak ioms

A third way to account for the recession of the surface
is to use zone elimination techniques. In this method the
fARRY ZORB 88t maller each time step until its thickness ap-
iproaches s small value. The first zone is then eliminated and
{tgsnﬁsgﬂqgezone becomes the first and so on. The advaantage of
ithe above two methods over this one is that the total number
iof zones remains constant, however, each zone is reduced by a
j factor at each time step. For a matter of illustration the
ifirst method is used with the finite difference solution and
jthe second method is used with the finite element representa—
ition of the heat conduction equation. ‘
|

:3.1 Phase Change
I

1

When the temperature of a unode reaches the melting tem—
perature of the material Tj, then this node temperature is
-fixed until all the heat of fusion is absorbed. Then the tem—
:perature of this node is allowed to change. During the phase
'change the material properties of the node is given by a com—
:bined value from both solid and liquid properties according to
"the ratio of the transformation at this time step.

_4. FINITE DIFFERENCE SOLOTION

~implicit method of Crank-Nicolson [16]. However,

There are several schemes available to express the time-
dependent heat-conduction equation in finite difference form
ranging from the so—called explicit form to the fully implicit
form. Each of these differencing schemes has its advantages
and limitations. The finite difference scheme used in solving
the above heat conduction equation is based on the modified
the nature

‘of this particular problem and the highly non-linear boundary

condition and the presence of low-order terms in the heat

.equation may force one to use a smaller value of At.

‘ The space is divided into N interval mesh points and the

Lnterval spacing may be non-uniform and is chosen such that it
- . - e - o= Lasthine here oo

i



< ——————— Start running headline here

The finite difference representation of Eq.
given by

(T“ a Tn—l)

J J

p C _—
AT

TlTuE OF PAPER HERE

Author’s Name Here

1$—auffrc1entiy—smatt“d%annuhmﬂau:ﬁuue af—the*mxter1at—whefe
vaporation and melting is expected to occur (Fig. 2).

(11) is then

n—~1
1/2[(KVT)J 1/2+(KVL)J 1/2] 1/2[(Kv1‘)J 1/2+(KVT)J+1!2]
Authory AppoiTITRTTFeTE 1/2(“3—1 + AXJ)
: l;. n
FIRST:{E/}%WGVHE@[ J - 3Tt J+1] (13) °
' Pip Y3 ‘
{ Start text hereJ (ij—l M AKJ)
where
n n
: T, , - T;)
| (T3 - Ty
g K)3o1/2 = KGor2 — (14)
' J-1
; {
| n n
-1 v & . .
n - — Arithmatic mean
Kj-1/2 = K P (15)
J-1 "J .
. a o Harmonic mean
; K K
' -J
n n N
V3 T V=0) (T) (16)

The governing equation in a

tridiagonal
-equations can be written 1n the form:

‘ n n n _ _n-l
| AJ TJ_1 + BJ TJ + CJ TJ+l = DJ Il €7 < N-1
where the coefficients are given by
a .n .0
Kﬂ pj CP.V_]

system of

(17)

(18)
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#;Cp K: K%
B. = ! J—‘ j- t/2 ) + j+i/2 A ) (19)!
j At Ax + Ax, Ax. ( Ax. + Ax.
] i1l j Ut A |
Kn pgcg Vg .
e = - J+1/2 T+ L ] (20).
J Ax  (Ax. + Ax. 2| Ax, + Ax. ;
" 35 j i-1 j
. TITLE OF PAPEH HERE
Author’'s Mame HL") Cn a-1 _n-1 =1 .n-1
' J P T, K - T. K.
: D hnr =»«T un\l J v + =1 J- 1/2 J _]—1/2
Y N At Ax [Ax gt ij)
n n ot
n-1 _n-1 n-1 n-1 V ( - )
z = - +
HHbT HE 'RL)S.\IUK ritlz Tj*'l Kj+1/2 . J 1
A Ax + Ax, 2\ Ax, + Ax.
Srart et e x_]T j-1 _]) ( x_]"l _]) (21)

5. BOUNDARY CONDITIONS

Similar equations for surface J=0 and N can be written
‘down based on the boundary conditions of that node. The
boundary condition used at the surface J=0 is given by

aT _
KD 3¢ lx=0 = 9qet (22)
where
qnet: 9 (£) - q\r - qc (23)

At the other boundary J=N several boundary conditions can be
employed in the code such as radiative, convective, or

isolated boundary coandition, i.e.,
For a radiative B.C.

ry oI 4 b
RCTY 32 | = —eo(Ty - T}, (24)

For a convective B.C.

aT _
K(T) o | o = h(Tg - 1) (25)
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where h 'is the heat trdnsfarrodeffileient of the fluid used td
cool the wall and T_ is the coolant tewmperature.

| )
EFor an isolated B.C.
|

R ] =0 (26)

i TiTLEThe Pgovernimg equation and the coefficients for the tri-

diagonal matrix can similarly and easily be obtained for each
boundary:acondition.

. AuthoAn Ajimpldcitiicalternating direction method suggested ULy
Peaceman and Rachford [17] is used tc solve the two—-dimension-
al problem. This method is only valid for linear equatioans,
but may be used here by transtorming the nonlinear system (ma-
tenialproperties, boundary conditions and zone thicknesses
may be temperature or time-dependent) into a quasi-linear sys-

tem,,in. which the nonlinear coefficients are frequently re-
evaluated.

6. FINITE ELEMENT SOLUTION

Using variational calculus the differential Eq. (1) and

the boundary and initial conditions are transformed into a
functional I defined as

I =/ {%—K'%§)2 - (pCp'%%)T]dV + [ q Tds + [ q,Tds f(27)
v sl s2

The solution is achieved by minimizing the above equation with
respect to temperacure, which yields

k1 (ry + o] A4 7y =0, (28)

where

[K] = global stiffness matrix
[C] = global capacitance matrix
!Tt global temperature vector
F

global force vector.
The time derivative of Eq. (28)
central difference scheme such that

I

1s approximated by wusing a

(a] {T}® = {B] {T}n-l - {p}o-1 (29)

where

(al = [[k] + X% {cl] (30)
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(B} = [—= - [k (3t

| §:3 [At {cl - Ikl]

'For a one—dimensional linear element and for the same geometry
{{Fig. 2) and the same boundary and initial conditions, the
imatrices are defined as

(KJ + KJ+1)

Jy 1 -1, \i
(K] = —5—5 [ 1 (3234
TITLE UF PATE R UE HE

andino s Mg Hoe
Aathas s Sposon i Here
(ByCp By * oy Cp  Bxpyy)
[¢'] - J I+l | 3 (33)
12 12 »

SIRST R e e

for, the. consistent formulations, or

; (pJCPJAxJ * pJ+ICPJ+1AxJ+1)
'] = %

b 1 (34)

for the lumped formulations.

The value of the force vector 1s dependent on the boun-
dary conditions imposed on that particular element. For exam-

pie, the force vector for the first element containing nodes 1
and 2 1s

q
{F} = | “gt} (35)

where q is given by Eq. {23). The value of the force vec-
tor of the last element is also dependent on the boundary con-
dition used for that element. All the other internal force
vectors are equal zeros for this particular problem, unless
there is a specified volumetric heat generation rate.

After each time step the temperatures throughout the tar-
get have to be corrected for the loss of material(ﬁt this time
step. The corrected temperature for node j, T is

- simply
given by J
n
aT .
T = 10 - —3 4x. (36)
] ] X . ]
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‘where' 6x. is the reductionnimthitkness of zone j due to the
|evaporation.

{7. APPLICATIONS

[
j
)
{7.1 High Energy Deposition on Target Materials

. Disruptions in magnatic fusion reactors lead to high
jenergy deposition for short times on in-vessel components.
‘Melting: fand:tevaporation may thea occur. An accurate predic-
‘tion of these quantities require the solution of two moving|
boundaries. discussed above. Table 1 shows the thermal re-|
sponse and the resulting vaporization and wmelt layer thick—
nesses, calculatedicby both finite difference and finite element!
metlhicds for two candidate materials, vanadium and stainless
steel. The calculation is done for an energy density of 1000
J/cm? deposited in two different times of 10 and 50 ms. Th4
agreemeot ybetween: the finite difference and the finite element]
is very good. Vanadium yields less vaporization than steel:
because. of its lower vapor pressure. It can also be seen that
the energy expaned in vaporization 1s much more than that lost
due to radiation. Higher energy lost to vaporization means.
less energy available for conduction to cause melting [20-21].
Longer deposition times allow more time for the cnergy to be!
conducted away from the surface and heace less energy to
produce vaporization but may cause more melting.

7.2 Vaporization of Small Spherical Pellets

Another application :or the solution of the two moving
boundaries problem is to calculate the lifetime of spherical
metallic pellets, injected into the edge of a plasma "scrape-
off region" to be vaporized and redeposited for coating pur-—
poses. The heat flux 1n this particular application 1is not
extremely high (=2-4 MW/m?) thus the pellet vaporizatioa can
be approximated and treated as a heat transfer problem rather
than a complicated hydrodynamic problem [23].

The heat conduction equation in spherical coordinates 1is
glven by

(37)

Q
-
=%
3
,M
=
o
)

o
Q>
cr
3]
(=9
[a]

The instantaneous radius of the injected pellet can be given
as

t
r(t) = R - [ v(T) dt (38)
[0

where
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R = pellet radius at t = 0
vit) = velocity of the eroding surface (Eq. 12).

The boundary condition on the pellet surface can also be given
by Eq. (7), while the boundary condition at the origin is
similar to that of Eq. (26).

|

| The solution wmethods and procedure is slmiiai Co the one-|

jdimensionaltcartigian coordinates and will not be discussed iq|
Jdetail here. The pellets are dropped in a comstant heat flux
region; wherew.their temperature starts rising to cause melting
,and vaporization. The lifetime (time for complete vaporiza-i
‘txomL.oimthe”p&hlet is determined when the radius is rmduce¢
'to less than 0.5% of its initial value as a result of the con-
‘tinuous erosion of surface material, then the calculation is:
‘stopped. The heat flux is assumed uniform ocn the whole sur-
fage; ok the:pellet.

s1ar A8, an _example the time for complete melting and the life-
time of the pellet for both vanadium aad steel is shown in
Table 2. Two heat fluxes of 2 MW/m“ and 4 Mw/m2 are consider-
ed. The initial pellet radii is taken to be 100 u and the
emissivity of both materials are assumed to be one. The pel-
let lifetime is lionearly proportional to the pellet radius.
The calculation shown is done by the finite difference meth-
od. The time for complete wmelting 1is much shorter than the
lifetime. An interesting point to mention that most of the
energy supplied to the pellet is lost in radiation im comtrast
to the previous application where most of the energy lost in
vaporization. This is wmainly because of the geometrical con-
figuration of this particular problem. As a result any de-
crease in emissivity of the material will substantially reduce
the lifetime. This is because lower emissivities means less
energy lost by radiatior and consequently higher surface tem-
peratures which result i» higher evaporation.

7.3 Electron or Ion Beam Interaction with Materials

Simulation experiments of high energy ion or electron
beam interaction with materials and the resulting thermal ef-
fects is modeled by solving the time dependent heat conduction
equation in axially symmetric cylinderical coordinates (r,z).
Whare r is the radial distance measured from the center of the
beam and z is the coordiuate normal to the sample surface with
origin at the surface. This equation is given by [20]

3T 1 3 T . ) AT :

== (ke —y 4 _
at r or ar) * dz (K'§;) +Q (r,z,t)

(39)

Equation (39) 1is solved using the same procedure discussed
above except it is dome in two dimensions. The boundary con-



Table 1

Thermal Response of Vanadium and Stainless Steel
by Finite Difference (FD), and Finite Element (FE) Methods
Energy Deposited 1000 J/em“, Initial Wall Temperature 300°C

10 ms Deposition Time 50 me Deposition Time
Vanadium Stainless Steel Yanadium Stainless Steel
Parameters FD FE FD FE Fp FE FD FE
Maximum Surface Temp. (°K) 3800.1 3801.1 3287,72 3287.95 32438 3248.6 | 2864.6 2865.45
Vaporization Thickness (u) 78.89 79.25 157.3 157.4 14,82 | 15.14 | 81.40 81.56
Melting Thickness (u) 286.4 286.7 204 204 431.9 | 448.,8 | 364.85 | 365.26
% Energy in Vaporizatioa 45,41 45,61 66,37 66,39 8.53 8.72 37.13 317.20
X Energy in Radiation 151 .152 0.085 0,085 3.25 ;3.2 2.26 2,26
Table 2

Finite Difference Solution for Spherical Pellet's Lifetime Jalculations
100 p Pellet Radii, 300°C Initial Temperature

Heat Flux 2 MW/m? 4 MW/l
Material
Parameter Vanadium Stainless Steel Vanadium Stainless Steel
Maximum Temperature (°K) 2405 2142 2650 2270
Time for Complete Melting (ms) 28 24 13,4 11.7
Time for Complete Vaporizatioa (s) 36 6.1 4.4 ! 2.0
% Energy in Vaporization 7 41 31 63
% Energy in Radiation 93 59 69 37

s afed prunion esg

D alijpea buoan g
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ditions are -also -similarartarrtheponendimensional case with-thd
! input heat flux may vary radially along the surface of the
i target, l.e.,

! q(r,t) = —K(Tv)%§-+ p(Tv]V(r,T)Lv + oe(Ti - T:) (40)

| It is found that the vaporization and melting of the tar-
get| |strougly;: depends on the characteristics of the beam spa-
‘tial distribution, beam diameter, and on the time variation of
the, beam, power [20]. As an example the maximum surface tem-
perature rise (i.e., at the center of the beam) is shown in
- Fdgnac(3)nfiorndothccopper and steel for an energy density of
800 J/cm“ deposited in 50 ms [20]. The temperature rise 1is
shown for different flat beam diameters. For beam diameters
> mm the steel surface temperature is much higher than that
fongcopperyand; the steel stays in the liquid phase for about
100 ms. Lateral conduction alcag the beam surface is very im-
portant ,for smaller beam diameters as it can be seen for the
copper case where it does not melt for beam diameters around 1
mu compared to the 3 mm beam diameter case, where about 360
microns of the copper is predicted to melt.

8. CONCLUSIONS

The time dependert heat conduction equation is solved
with two moving boundaries in different coordinate systems
subject to various boundary coanditions. The first moving
boundary is the receding surface as a result of evaporation of
surface materials. The second moving boundary is the melt-
solid interface due to the change of phase in the material.
The boundary conditions include surface heat flux, energy to
vaporization, radiation from the surfaces and phase change.
Both finite difference and finite element methods are used in
the solution and show good agreement. The solutioun developed
in different coordinate systems has several important applica-
tions in space, fusion reactors, and weapons research, involv-

ing high energy deposition and interaction of different radia-
tion with matter.
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