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by

A. Hassanein and I. Konkashbaev

ABSTRACT

Thermoelastic response of liquid metal targets exposed to high-volumetric-energy deposition
in times shorter than the target hydrodynamic response time (i.e., sound travel time) is of interest
to several research areas, including first walls of fusion reactors (especially inertially confined
fusion reactors), targets for high-power accelerators such as the Spallation Neutron Source, muon
collider targets, etc.  Under conditions that exist in these reactors, accelerators, etc., the deposited
energy is considered instant in time from the hydrodynamic point of view.  Because thermal heat
conduction requires a longer than instant response time for energy redistribution, only
hydrodynamic phenomena should be taken into account when modeling and simulating the
fragmentation of suddenly heated liquid metal jets.

Sudden energy deposition causes an instant rise in temperature that leads to a corresponding
rise in the thermal pressure that causes excitation of sound waves, i.e., shock waves and
rarefaction waves.  During this excitation of sound waves, pressure oscillates with magnitude ±
∆P that corresponds to an initial thermal pressure of tens of katm.  Liquids are frequently
observed to withstand significant negative pressures (hydrostatic tensile stresses).  Yet, a liquid
subjected to a negative pressure is metastable. The formation and behavior of cavities (empty
voids) under negative pressures was previously studied.  Theoretically, the obtained fracture
(failure) pressure of mercury is in good agreement with experimental results.  Cavitation, or
spontaneous formation of cavities, in stressed liquid metal targets is of interest to engineers and
physicists who operate high-power targets in fusion reactors, nuclear accelerators, and particle
colliders.

The problems of liquid target oscillation in the presence of large magnitudes of negative
pressure, and the mechanism of fragmentation and its consequences are considered in this
analysis.  It is shown that a cavity coming into existence will initiate a shock wave that is
actually a relaxation shock wave initiated when the stretched medium reverts to normal density
from the low-density state.  The nature of this relaxation wave is similar to that of the detonation
wave.   It is also shown that a cavity born at the high-negative-pressure stage expands
permanently and does not disappear.  This permanent expansion and failure to disappear is a
major difference between the cavity dynamics in stretched media and the dynamics observed in
the usual cavitation processes that occur when vapor bubbles collapse during a phase of
increased pressure, and is the result of “unloading” or “discharging” of the medium by the
relaxation shock wave initiated by the appearance of the cavity.  Detailed calculations of cavity
dynamics are presented for both spherical and cylindrical liquid metal target systems.
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1 INTRODUCTION

Thermoelastic response of liquid metal targets exposed to high-volumetric-energy deposition
for times shorter than target hydrodynamic response time (i.e., sound travel time) is of interest to
investigators engaged in research on, for example, first walls of fusion reactors (especially
inertially confined fusion reactors [ICF]), targets for high-power accelerators such as the
Spallation Neutron Source, muon collider targets, etc.  Under such conditions, the deposited
energy is considered instant in time from the hydrodynamic point of view.  Because thermal heat
conduction requires a longer than instant response time for energy redistribution, only
hydrodynamic phenomena should be taken into account, when modeling and simulating the
fragmentation of suddenly heated liquid metal jets.

In the muon collider project, for example, the proton beam deposits part of its energy in a
liquid metal target, which is thereby heated to a high temperature T of thousands of degrees, with
a corresponding thermal pressure increase ∆P of several tens of katm.  The energy deposition
time τenergy of a few nanoseconds is much less than the time of sound travel τsound of tens or
hundreds of microseconds: τsound ≈ l/Cs, where l, the characteristic target size, is ≈1-10 cm, and
Cs is the speed of sound of a few km/s.  For such a short deposition time, the deposited energy
cannot be spread over the target medium, even by hydrodynamic motion.  Therefore, the energy
deposition time is considered instantaneous from the target hydrodynamic standpoint.  Because
thermal conduction requires more time for energy redistribution and mixing, only hydrodynamic
phenomena should be taken into account.

Sudden deposition of beam energy in a cylindrical liquid metal target causes an instant rise in
thermal pressure, which in turn, causes excitation of sound waves in both the radial direction r
and the longitudinal direction z.   The corresponding characteristic target response times are τR =
R/Cs and τL = L/Cs, where R and L are target sizes in the r and z directions.  During these
excitations, the pressure oscillates with magnitude ± ∆P, where Pmax = ∆P and Pmin = - ∆P.
Liquids frequently are observed to withstand significant negative pressures (hydrostatic tensile
stresses).  Yet a liquid subjected to a negative pressure is metastable.  Spontaneous formation of
cavities in stressed liquid metal targets and the resultant cavitation are of interest to engineers
and physicists in the operation of high-power targets in fusion reactors, nuclear accelerators, and
particle colliders.

Wave excitation and oscillations due to pressure release and fluid dynamics of a lithium first
wall in an ICF reactor were calculated by several authors [1-3].  Liquid target fragmentation was
studied only from the standpoint of energetic considerations [4,5] which assumed that part of the
deposited energy (corresponding to the deviation of velocities from the mean mass velocity) is
converted into surface tension of resultant droplets.  However, the problem of which mechanism
is mainly responsible for liquid fragmentation and the production of liquid droplets was not
properly studied.  Nevertheless, various mechanisms that lead to liquid fragmentation do exist
and were investigated in the 1940s and 1970s by several authors [6-12].
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Below, the problems of liquid target oscillation in the presence of large negative pressure, the
mechanism of fragmentation, and the consequences are discussed on the basis of previous
theoretical work [7], experimental data [8-9], and our HEIGHTS comprehensive numerical
simulation package [13-14].  We have developed a new concept of shock wave tensile relaxation
that will lead to liquid target fragmentation because of target heating.  Most of the numerical
calculations are given for a free liquid mercury jet heated by a 20-GeV proton beam, as
described in the muon collider project work [15].  The spatial energy deposition in the target was
calculated by using the MARS code [16].

2 LIQUID JET OSCILLATION

A free liquid metal jet is the assumed target in the production of pions that decay to muons
because of interaction with a 20-GeV proton beam, as schematically illustrated in Fig. 1.  During
beam/target interaction, proton beams deposit a small part of their total energy (<10%) in the
liquid mercury target.  The magnitude of the energy deposited Q can be rather high, i.e., Q = 50-
130 J/g.  Such high-energy deposition leads to instant heating of the target to 1000-2000 K, with
a corresponding rise in thermal pressure to 50-100 katm.  Pressure relaxation leads to the
excitation of both radial and axial oscillations.

Lo

2 Ro

liquid metal cylinder

proton beam

Fig. 1. Schematic illustration of interaction between proton
beam and liquid metal jet

The oscillation of the liquid mercury jet in both axial (z) and radial (r) directions were
considered separately in this analysis.  Because the flight time of the liquid jet along the
magnetic field τz of a few milliseconds is much larger than the time of the radial and longitudinal
oscillations, the liquid jet is assumed to be stationary in the z direction during beam/target
interaction.  The longitudinal motion can, however, be easily taken into account by simply
adding a constant-velocity term U along the z direction, with a corresponding shift in position,
by adding ∆z = Ut.  Most of the results presented in this study are given for the following
conditions.  The radius of the liquid cylinder R0 = 0.7 cm, the jet length L0 = 29 cm, and two
proton beams of the same 20-GeV energy strike the flying jet at t1 = 0 and t2 = 150 ns separately.
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Figure 2 shows the energy deposition distribution in the z and r directions as given when we use
a fit formula implemented in HEIGHTS to approximate the MARS code calculation.

Fig. 2.  Volumetric beam energy deposition in liquid Hg jet

For numerical simulations of liquid metal dynamics, we used the comprehensive HEIGHTS
MHD package.  The following equations of mass, momentum, and energy conservation are
solved for the general planar, cylindrical, and spherical target systems:

    

dρ
dt

 +  p∇ .
r 

V  =  0,

ρ
d

r 
V 

dt
 +  ∇ p +  pµ( ) =  0,

dE
dt

 +  E +  p( )∇ .
r 
V  =  0,

pµ =  
B2

4π
,

 (1)

where ρ is density, V is velocity, p is pressure, E is internal energy of the liquid target, and B is
the applied external magnetic field.  The equation of state, which consists of three terms, was
used [17], assuming that the internal energy arises from the thermal motion energy of nuclei Ei,
the thermal excitation energy of electrons Ee, and the elastic energy Ecold.  Correspondingly, the
pressure also consists of three terms:  Pi, Pe, and Pcold.
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ρ
,
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 -  1
 

 
 
 

 

 
 
 ,  Pxo =  1

n
ρoCso

2 ,

(2)

where T0 is the initial target temperature; E0 is the initial thermal energy; β0 is the coefficient of
electron specific heat; Γ is the Gruneisen coefficient determined by the volume dependence of
the tensile pressure Pcold, obtained from relevant experiments; power n depends, in general, on
density ρ;  and Cso is the sound speed under initial conditions, T = To, and ρ = ρo.

2.1 Radial Oscillations

In the case of the muon collider target that uses a free-flying mercury jet with a velocity of
10-20 m/s, the flight time from the entrance to the coil is much longer than the magnetic field
diffusion time.  However, the jet flight time is less than the radial oscillation period caused by
the sound wave excitation.  Therefore, the electric and magnetic fields were taken into account in
cylindrical geometry, assuming that in the initial state, the jet outside the magnetic field that has
a magnitude of Bo = 20 T and is completely diffused into the liquid cylinder.  Equations for the
magnetic and electric fields have the form

    

∂
r 
B 

dt
 =  -  c ⋅  ∇ x

r 
E ,

r 
E  =  

1
c

r 
V x

r 
B [ ] +  

r 
j 
σ

,

j =  
c

4π
 ∇ x

r 
B ,

(3)

where the magnetic field B has only a z component in this case, the electric field E and the
current density j have only a ϕ component, the velocity V has only an r component, and the
electric conductivity σ of the liquid metal target is assumed constant.

Figure 3 shows the radial distribution of temperature that is a result of beam energy
deposition from only one proton beam at the axial distance z = 5 cm (where the energy
deposition is maximum).  The corresponding maximum temperature is ≈1200 K and the thermal
pressure is ≈50 katm.  Because of pressure relaxation, the liquid metal cylinder oscillates with
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modes kr = 0, ∞.  For a given wide distribution of beam energy deposition, which can be
approximated by a Gaussian profile,

Q r( ) =  exp -x2( ),  x =  
r
2λ

,  (4)

where the effective size λ is ≈0.3 cm, in this particular case, most of the deposited energy is
concentrated in the main mode with a corresponding frequency fo ≈ Cs / Ro = 105 Hz.  For
narrower beams, higher excitation modes exist.  The time dependence of jet radius and velocity
of the cylindrical surface following beam deposition is given in Figs. 4 and 5, respectively.  The
magnitude of the surface velocity reaches hundreds of meters per second but it is still 10 times
slower than the sound velocity Cs ≈ 2.5 km/s; therefore, the resultant oscillations are near the
linear mode.  Figure 6 shows the fluctuation in jet radius with time after beam energy deposition.
These oscillations clearly demonstrate the shock wave propagation and reflection at the jet
surface.  Figures 7 and 8 illustrate the radial and time dependence of pressure P(r, t) and the
change of density ∆ρ(r, t) relative to the normal value ρo, i.e., ∆ρ(r, t) /ρo, respectively.
Hereafter the space coordinates r and z shown in figures that indicate space and time dependence
indicate the Lagrangian coordinate, i.e., the coordinate of the given mass at t = 0.  It can be seen
in Fig. 8 that the density oscillates around a value determined by the equilibrium between the
thermal pressure and the cold pressure (thermal expansion).  The temperature oscillates with a
magnitude of ∆T ≈ 400 K around an equilibrium value of 900 K.  The pressure oscillates with a
magnitude of ≈ ∆P ≈ 40 katm; therefore, during a half period of 5 µs, the liquid negative tension
reaches ≈ –40 katm.  It follows from these calculations during times of interest of tens of
microseconds, that the diffusion of magnetic fields can be neglected; therefore, the magnetic
field can be assumed frozen in liquid metal and

  

Bz
ρ

 =  
Bzo
ρo

.  (5)

Thus, the space and time dependence of the magnetic field is similar to that of density.

            

Fig. 3. Radial peak temperature distribution Fig. 4. Time dependence of jet radial
after beam deposition oscillations after beam deposition
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Fig. 5. Time dependence of jet Fig. 6. Fluctuations in jet radius with
 surface velocity time following beam deposition

    

Fig. 7. Time dependence of radial pressure Fig. 8. Time dependence of radial density
waves and Hg jet radius and Hg jet radius

2.2 Axial Oscillations

The axial magnetic field has no influence on the liquid motion along magnetic field lines;
therefore, the axial magnetic field is time independent.  The deposited beam energy attains a
maximum at z = 5 cm; therefore, the temperature also attains a maximum at z = 5 cm.  The target
liquid cylinder will also oscillate along the z axis, but with lower frequency than the radial
oscillations.  Because energy deposition is more or less homogeneous along the axis, most of the
energy also concentrates in the main mode with a corresponding frequency fo ≈ Cs/Lo = 104 Hz.
The time dependence of the length and velocity of the cylinder surface is shown in Fig. 9.  The
magnitude of the surface velocity also reaches hundreds of m/s.  Figure 10 shows the time
evolution dynamics of the axial length of the jet.  Figures 11 and 12 show the space and time
dependence of the axial pressure P(z, t) and the axial density deviation from the normal value ρo,
i.e., ∆ρ(z, t) /ρo.  The magnitude of the temperature oscillations is ∆T ≈ 400 K.  The magnitude
of the axial pressure oscillations ∆P ≈ 30 katm, with an equilibrium value of ≈ 20 katm;
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therefore, the negative tension reaches only about –20 katm.  The period of the axial oscillations
is ≈ 500 µs, increasing correspondingly with the ratio Lo/Ro, when compared with the period of
the radial oscillations.

   

Fig. 9. Time dependence of edge coordinate Fig. 10. Change in Hg jet axial length
(length L) and velocity of Hg jet after beam deposition

       

Fig. 11. Time dependence of distance z Fig. 12. Time dependence of distance z
and axial pressure in Hg jet and axial density fluctuations

in Hg jet

It is important to note that for the equation-of-state given in the form of Eq. 2 with constant
power n, the maximum negative pressure cannot exceed that of Pxo because in reality the liquid
density at P = - Pxo should equal zero, i.e., the liquid must break! Therefore, the calculation for
the radial oscillations was made for only one beam interaction inasmuch as the negative pressure
approaches -Pxo with the initial thermal pressure of 50 katm because of the cumulative
phenomena at the axis in cylindrical geometry.  For the axial (planar) case, the negative pressure
reaches only 20 katm < Pxo, even for the initial thermal pressure of 100 katm that is the result of
the two-beam deposition.
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The definition of fast energy deposition is determined from the relationship between the
energy deposition time τenergy and the travel time of sound τsound, i.e., ζ = τenergy /τsound, along the
target (in r or z directions).  At  ζ < 1, the energy is deposited faster than the time of pressure
relaxation along the target by sound waves; therefore, excitation of sound waves (shock and
rarefaction waves) takes place.  In this case, large negative pressure near the axis can occur
because of accumulation of the rarefaction wave.   At  ζ > 1, the energy deposition is slow;
therefore, the resultant pressure has time to equilibrate along the target.  Such a process is quasi-
stationary when at every time the total pressure P(t) is near zero, i.e., the thermal pressure is
equilibrated by the cold pressure due to material expansion.  This process is the well-known
phenomenon of material thermal expansion when total P(t) ≈ 0.  Figure 13 shows the maximum
pressure at the target axis and the time of first accumulation given as a function of the energy
deposition time.  The calculations in this case were made for a cylindrical graphite target with
radius R = 0.7 cm and a total energy deposition of Q = 20 J/g.   The travel time of sound τsound =
R/Vs ≈ 1.8 µs for a sound speed in a carbon target of Vs = 3.87 km/s.  It can be seen that Pmax

sharply decreases from 8 katm to 1 katm with increasing energy deposition time from τenergy = 0
to 1 µs (ζ ≈ 0.5) and Pmax approaches zero as ζ → ∞.  Actually, Pmax can be regarded as near zero
at ζ > 4.  Of course, a result of thermal expansion is that there is no serious problem with target
fragmentation.  The only problems are target cooling and fatigue lifetime due to thermal cycling
effects.

Fig. 13. Maximum pressure and time of first accumulation
waves on axis as function of deposition time when
target radius was 0.7 cm and total energy deposition
was 20 j/g

3  CAVITY APPEARANCE

Let us consider the consequences of these oscillations in relationship to the problem of target
break and fragmentation.  The above calculations show that the resultant pressure and
temperature are rather high and comparable to the critical values for a mercury target, i.e., Tcrit =
1763 K and Pcrit = 1.535 katm.  However, the density is still near the normal value ρnorm = 13.6
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g/cm3 and quite far from the critical density ρcrit = 5.3 g/cm3.  Therefore, such conditions are far
from those necessary for spinodal decomposition and the liquid target remains stable relative to
phase change conditions.  However, the liquid target under these conditions may be unstable
because of existing negative pressure phases in the presence of which the liquid is under severe
tension.  A main mechanism of possible liquid fragmentation, developed in this work, is the
tensile relief wave initiated by the birth of cavities in severely stretched liquids, as will be
described below.

There are three main mechanisms of target fragmentation.  In the first, after reflection of the
shock wave from the free surface boundary, complete destruction and vaporization can take
place because of pressure relief and unloading at the surface.  However, the magnitude of the
required shock wave should be sufficiently high to deliver to target atoms enough energy to
exceed the binding energy of a few eV per atom.  The magnitude of the required shock for
instant fragmentation is quite high and can exceed 1 Matm.  The conditions of the shock
encountered in the muon collider targets are not that high and this mechanism will not be
considered in this study.

A second reason for target fragmentation is the negative pressure exceeding the value Pxo, at
which, by definition, the medium should fail.  This is a very destructive process, and for solid
materials such a limit of tension is measurable.  However, solid materials are mostly
polycrystalline (i.e., they consist of grains) and measured tension failure is determined by
intergrain properties. Only measurements for pure crystalline materials can provide the required
data for the ultimate strength.  Such measurements exist, however, only for solids and not for
liquids.

For liquids subjected to large negative pressures, failure is attributed to preexisting cavities,
the third mechanism of fragmentation. Therefore, the mechanism of dynamic arising of cavities
and the consequences on materials failure are analyzed in detail in this study.  It may be helpful,
however, to say a few words about the equation of state at negative pressures.  At this time, no
fully satisfactory theory exists for calculating the thermodynamic functions of materials with
lower-than-normal density when they are subjected to negative pressure.  There also are no
experimental data.  Under these circumstances, experiments on liquid targets with oscillating
pressure phases would be very helpful in accessing this failure mechanism.  By comparing
experimental data with relevant calculations, it is possible to find the actual dependence of the
cold and thermal pressures on density and temperature.

The idea behind this liquid fragmentation mechanism is the tensile relief wave that is
initiated spontaneously in response to arising cavities. A liquid that is subjected to a strong
negative pressure is known to be metastable.  Cavitation theory for the vapor bubbles that rise
and collapse in an overheated liquid state has been well investigated in the past.   But the
formation of cavities under strong negative pressure displays features that are different from
those suggested by the theory of void nucleation in the superheated state [6-7].

The net work associated with the reversible formation of a spherical cavity of radius r inside
a liquid medium subjected to a negative pressure is given by
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W =  4πr 2σ +  

4
3

πr3 P -  Pv( ), (6)

where P is the pressure in the liquid (negative), Pv is the vapor pressure in the cavity (positive),
and σ is the surface tension.  Because a large negative pressure of several tens of katm is
encountered in this analysis, the cavity vapor pressure Pv can be neglected and therefore the work
W maximum occurs at the critical radius r*, defined as

  
r*  =  -  

2σ
P

,  Wmax =  
16π
3

σ3

P2 .  (7)

A cavity coming into existence with a radius less than the critical radius, i.e., r < r*, will
disappear and cavities with r > r* will grow freely.  The equilibrium distribution of cavities with
radius R is given by

  
n r( ) =  N exp -

W
kT

 
  

 
  ,  (8)

where N is the number of particles (atoms, molecules) in the liquid.

The theory of nucleation [6-7,10-12] predicts that the rate of critical cavity formation is given
by

  

dn
dt

 =  
NkT

h
exp - 

∆f +Wmax
kT

 
  

 
  , (9)

where ∆f is the free energy of activation for the motion of an individual particle of liquid away
from the cavity surface, i.e., ∆f ≈ 5000-7500 cal/mole [7].  The relative variation of failure
pressure Pτ with ∆f is small (<10%); therefore, for reasonable estimates, it is convenient to
substitute ∆f = 0 without loss of accuracy.  From Eq. 9, one can obtain the value of the fracture
pressure as

Pτ  =  - 16π
3kT

σ3

LnA
 LnA

LnA+ Lnτ

A =  
NkT

h
,

(10)

where τ is the time within which at least one cavity can be expected to form.  For liquid mercury
with σ = 474 erg/cm2,
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A =  NkT
h

 =  2.55 ⋅1035 ,  LnA =  96.24

Pτ  =  Pτo
LnA

LnA+ Lnτ
,  Pτo =  22.3 katm.

(11)

Therefore, at negative pressure P < -Pτ, liquid mercury can be fractured (broken) because of the
growth of cavities.  It should be noted that Ln(τ) is usually much lower that Ln(A); therefore, Pτ,
practically, does not depend on time τ because of weak logarithmic dependence.

Experiments to study liquid fracture under negative pressure have been carried out with
liquid mercury under various conditions [8,9].  Early experiments of Briggs [8] showed that the
fracture pressure has a strong dependence on experimental conditions, i.e., cleanliness of the
mercury and the surfaces of the glass tube that contain the liquid.  The liquid fracture pressure
increased from 7 to 425 atm by additional cleaning of the mercury.  Further experiments [9],
performed under controlled conditions with highly purified mercury, show that the fracture
pressure is ≈19 katm; very similar to the theoretical limit of 22.3 katm.  The overall agreement
between mercury experiments and the theory was very good [9].  The large discrepancy between
the earlier data [8] and theory can be explained by mercury that was not sufficiently pure to
eliminate dissolved gases and by using a glass tube to eliminate embryonic sites at the glass
surface.  Practically, the fracture pressure under liquid working conditions is usually five to ten
times lower than the theoretical limit due to these dissolved gases and impurities.  For example,
for water, Pτ(theory) = 1.32 katm [6], but Pτ (experimental) is only lower than 350 atm due to the
presence of impurities [9].

Therefore, one can conclude that at negative pressures below the fracture limit, the birth rate
of cavities with critical radius is practically independent of the time at which the pressure
remains negative.  Below, we will consider our new concept of the mechanism of fracture as the
consequence of cavities coming into existence during the negative-pressure phase.

4  SHOCK WAVE RELAXATION

In this section, we study the dynamics of a liquid target in which a cavity with an initial
radius equal to or greater than the critical radius is coming into existence.  As mentioned before,
the vapor pressure inside the cavity can be neglected and the cavity is regarded as an empty hole.
Therefore, inside the empty cavity the pressure is equal to zero, i.e., Pcavity = 0, but the liquid
outside the cavity is at negative pressure Pliquid = -P.  At the cavity interface, a jump of pressure
given by

∆P =  Pcavity -  Pliquid =  P  (12)

takes place ahead of the cavity boundary; therefore, a shock wave with an amplitude Pshock = ∆P
is formed.  This shock wave is, in reality, a relaxation wave that occurs when the stretched
medium reverts back from density ρ < ρo to the normal density ρo.  The characteristic of this
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relaxation shock wave is similar to that of a detonation wave because the energy that initiates the
shock is taken from within the medium itself, i.e., it releases the energy used in stretching the
target.  Figure 14 schematically illustrates cavity expansion and the initiated shock wave of
relaxation.

Fig. 14. Schematic illustration of relaxation shock
wave initiated when cavity appears

The features of this shock wave of medium relaxation can be clearly demonstrated for the
plane geometry case, wherein the jump in pressure is always equal to ∆P (from -∆P to zero).  The
velocity of the medium U between the shock wave and the cavity boundary is constant and can
be obtained from the following analytical considerations.

Let us define the states of the medium ahead of (without subscript) and behind (subscript o)
the shock front.  The mass and momentum conservation laws can be written in the form

  ρD =  ρo D -U( ) (13)

  ∆P =  ρDU,  (14)

where D is the speed of the shock propagation through the stretched medium.  The third equation
(energy conservation law) can be written in the form of the Hugoniot equation

  
∆Esρ =  

1
2

∆P ρo -  ρ( ),  (15)
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where  ∆Es is the total energy acquired by the substance because of the shock.  The change in the
internal energy, in turn, is composed of changes in the elastic and thermal energies.  The jump in
the elastic energy of the system corresponds to the jump in the density.  In the pressure range of
interest, tens of katm, the difference between isentropic adiabatic and Hugoniot adiabatic is
almost imperceptible because the contribution of the thermal pressure is negligible when
compared with that of the cold pressure.

Therefore, all of the elastic energy should be converted into kinetic energy because after the
shock front passes the density is equal to the normal density and the corresponding elastic energy
is equal to zero:

1
2

ρoU
2 D -  U( ) =  ∆E D, (16)

where ∆E is the energy of elastic deformation.  From Eqs. 13 and 16, one can obtain the velocity
U and the shock wave speed D:

U =  2
∆E
ρ

,  D =  Do 2
∆E
Eo

 
ρo
ρ

 1 -  
ρ
ρo

 

 
  

 

 
  

Do =  Cso .

(17)

Because the deviation in density ε is much less than unity, i.e., ε = (ρo -ρ)/ ρo <<1, one can
expand D in a power series of ε to obtain

  
D =  Do

1
1 - ε2 >  Do. (18)

Thus, the shock front moves supersonically as usually observed in such shock waves.  The liquid
behind the shock wave moves with subsonic velocity, given by

  
U =  Cso

ε 2

1 - ε
,  U =  Dε. (19)

The main difference between this relaxation shock and a conventional shock wave is that the
relaxation shock is driven not by external forces, for example, when energy is deposited into the
medium from outside, but by the internal source of energy.  This shock is similar to a detonation
shock wave because the energy source is the stored elastic energy that is released immediately
when the shock front arrives.

To illustrate this example, using the HEIGHTS package, we performed a simple calculation
for a slab of liquid of size L = 10 cm stretched (1 + ε) times, where ε = 0.05.  Figure 15 shows
that the size of the slab decreases with constant velocity and the relaxation shock wave moves
with supersonic speed.  Because ε = 0.05 << 1, this speed is, however, slightly above the sound
velocity.  Figure 16 shows how the cold pressure returns back to zero when the density returns to
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the normal value because of the relaxation shock wave.  The velocity evolution in the plane
geometry case is shown in Fig. 19.  The calculated exact value of this velocity, V = 68.9 m/s, is
in good agreement with the theoretical estimate from Eq.18.

      

Fig. 15. Liquid dynamics after relaxation Fig. 16. Time dependence of axial cold
shock wave pressure inside plane jet

Fig. 17.  Time dependence of length and axial velocity of plane jet

The above calculations are similar to those encountered in an ICF reactor, in which a thick (L
= 10-20 cm) flow of liquid lithium is used to protect the wall from neutron radiation and pellet
debris.  Because the chamber radius R (a few meters) is much larger than the flow depth of the
liquid lithium, flow simulation dynamics can be considered planar.  After the initial shock wave
is reflected at the free surface, the rarefaction wave propagates to the back side, leaving behind
the stretched liquid.  Therefore, during the time of this wave propagation, cavities can grow if the
magnitude of the negative pressure exceeds the fracture limit of the liquid target.

For a cylindrical or spherical geometry, it is necessary to take into account that the medium
velocity between the shock wave and the cavity boundary is not constant but depends on the
radius of the cylinder or sphere.  Because the released energy per unit volume is constant,
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additional redistribution of the released energy is required, and in this case analytical
consideration becomes very complicated.  Therefore, we considered in detail with the HEIGHTS
package only those cases of cavity growth dynamics under negative pressures that were more
realistic and of greater interest to us.

5  CAVITY DYNAMICS - SPHERICAL CASE

A liquid jet will oscillate between cycles of negative and positive pressure after beam
deposition.  During the negative-pressure period, the pressure can achieve the fracture limit of,
for example, 22.3 katm for pure mercury liquid, or less for a working liquid that contains
impurities and dissolved gases.   Therefore, several cavities with radius equal to or exceeding the
critical size can be born and grow.  In the usual cavitation theory, vapor bubbles grow until they
encounter the high-pressure period during which they collapse, an event that is recognized by the
measurement of the acoustic noise.  A similar question arises in our problem: does a cavity that
is born and continues to grow during the half-period with negative pressure collapse during the
second half-period with positive pressure?  The answer to this question was studied numerically
with the HEIGHTS package in two cases: cavity dynamics in a spherical target case and in a
cylindrical-target case.  It will be shown below that the situation in liquid targets exposed to
large negative pressure is different from the usual cavitation of vapor bubbles.

The simulation and response of cavity dynamics were studied in detail with HEIGHTS in
one-dimensional spherical and cylindrical geometry.  To answer the question of cavitation, i.e.,
the possibility of a cavity collapsing during the stage of positive pressure, oscillation of a liquid
sphere heated instantly to a high temperature was simulated. Influence of a strong magnetic field
(that exists in the muon collider target chamber) was not taken into account in understanding the
spherical-cavity expansion.

The initial conditions of this calculation are the following: radius of the spherical target R = 1
cm, inner part of the target r ≤ 0.5 cm is heated instantly (at t = 0) with an energy deposition of Q
= 50 J/g.  After target heating, the temperature rises instantly to To = 1100 K, with a
corresponding thermal pressure of Po = 20 katm.  At time t = 0 two waves propagate from the
surface at r = 0.5 cm: a shock wave of compression moving radially outward and a rarefaction
wave moving to the sphere center.  At time t ≈ 4 µs, the rarefaction wave reaches the sphere
center with a negative pressure at the center P ≈ -Pc = 40 katm.   The target temperature at the
center is cooled from the initial 1100 K to 700 K because of expansion.  The magnitude of Pc is
higher than the initial pressure Po because of the cumulative effect at the center of the spherical
target.

A cavity with a size Rco = 0.25 mm is then assumed to be born at the time of maximum
negative pressure.  Figure 18 shows both the dynamics of the liquid target and the new cavity at
the center of the target (at t ≈ 4 µs) in the r-t plane.  Figure 19 shows the time dependence of the
cavity radius and cavity surface velocity.  It can be seen that the velocity of the cavity surface
oscillates with a decreasing magnitude from very high, >1000 m/s at t = 4 µs, to <200 m/s at t =
50 µs.  The velocity oscillates around a mean value that decreases with time but never becomes
negative.  This oscillation can be explained, as mentioned above, by the release of internal
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energy by the propagation of a shock wave of relaxation ahead of the cavity; thus., bringing the
medium back to the normal state with normal density. Figure 20 shows the time dependence of
the spherical radius of a liquid target and the target surface velocity.  It can be seen that the target
velocity also oscillates with a decreasing magnitude much less than the velocities at the cavity
surface.

Fig. 18.  Dynamics of cavity growth in Hg target

    

Fig.  19. Variation of cavity radius and Fig. 20. Time dependence of spherical
velocity as function of time radius of liquid target and

velocity of target surface after
cavity initiation

The density at the cavity surface is equal only to 0.8 ρo because this density is the result of an
equilibrium between the thermal pressure and cold pressure at T = 700 K, as shown in Fig. 21.
Figures 22-24, respectively, show the radial density, velocity, and pressure variation as a
function of time.   The  initial  critical  size  of cavities born  at a time  during  which the absolute
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Fig. 21. Relative target density at outer and Fig. 22. Time dependence of radial
inner cavity surfaces after cavity density after cavity initiation
initiation

  

Fig. 23. Time dependence of radial velocity Fig. 24. Time dependence of radial
after cavity initiation pressure waves after cavity

initiation

value of the negative pressure is more than the fracture limit of 22.3 katm (for mercury), will be
only Rcrit ≈ 4 Ao (at 22.3 katm); therefore, it would be desirable to assume Rco = Rcrit.  However,
HEIGHTS simulation shows that the dynamics of cavity growth do not depend on initial size if
Rco ≥ Rcrit.  As can be seen in Fig. 19, the velocity of the cavity surface increases rapidly to a
very high value that is comparable to the speed of sound.  However, with time, the cavity surface
velocity decreases and the mean velocity of the shell tends to oscillate around 200 m/s, which
corresponds to the released elastic energy ∆E.  Therefore, to save computer time, the calculations
were made with an initial cavity radius of a macroscopic value of Rco = 0.25 mm because the
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expansion from the critical size to Rco occurs in a very short time, i.e., <0.25 ms, and requires a
very small computer time-step.

From these calculations, one can conclude that after a cavity is born at the negative pressure
phase, it expands freely with a decreasing expansion velocity to a value defined by the elastic
energy stored in the system.  The spherical target, as a whole, oscillates because of the initial
shock, and also expands freely to release its initial energy, which is converted into kinetic energy
of the hollow spherical shell.  This means that any cavity coming into existence during the
negative pressure stage will continue to grow and will not disappear.  This failure to disappear or
collapse is a major difference between cavity dynamics in a stretched medium and the usual
cavitation wherein vapor bubbles collapse during a phase of increased pressure, and is the result
of the discharging or unloading of the medium by a relaxation shock wave that is initiated by the
appearance of cavities.

6  CAVITY DYNAMICS – CYLINDRICAL CASE

The fragmentation of a cylindrical liquid jet is important to the muon collider target.  It was
shown earlier that the cylindrical jet oscillates in both radial and axial directions after instant
beam energy deposition.  Because the frequency of the radial oscillations is much higher than
that of the axial oscillations, cavity dynamics and fragmentation are mainly governed by the
radial oscillations.  During a negative pressure phase of tens of microseconds duration, it is
highly probable that several cavities can spontaneously come into existence near the jet axis,
where the magnitude of the negative pressure is maximum.   The dynamics of such cavities will
be similar to that of the spherical case discussed above.  These cavities also expand freely,
initiating a shock wave of relaxation ahead of the cavity surface.  During a short time, these
cavities will mainly expand in radial directions.  However, the expansion velocities of the
cavities in both radial and axial directions will be similar.  At longer times, these cavities can
join to produce an elongated cavity with an axial size that is much larger than the radial one, as
schematically illustrated in Fig. 25.

Fig. 25.  Elongated hole formed by merging spherical cavities



20

Similar calculations were performed with HEIGHTS for conditions relevant to the muon
collider mercury target.  Figure 26 shows the time evolution of the hole radius Rhole and surface
velocity of the hole Vhole, after the birth of the hole at t = 4.1 µs during the negative pressure
phase.  The cylinder radius Rhole and velocity of the surface Vhole are shown in Fig. 27 as a
function of time after beam deposition.  The dynamic evolution of the hole and the cylinder is
shown in Fig. 28 in the r-t plane.  It can be seen that the situation is similar to the spherical case
qualitatively and quantitatively.  The hollow cylindrical shell expands freely with a rather high
mean surface velocity of ≈50 m/s.

    

Fig. 26. Cavity radius and velocity as a Fig. 27. Oscillations of target surface radius
function of time after cavity and velocity as a function of time
initiation in cylindrical case after beam deposition in cylindrical

case

Fig. 28.  Time dependence of cavity and cylinder growth

In future studies, the influence of magnetic field on cavity dynamics and liquid fragmentation
will be taken into account.  However, some speculations about the consequences of such
expansion can be made, taking into account the existence of an axial magnetic field.  Initially the
magnetic field will diffuse from the target medium to the hole or the cavity.  However, within
tens of microseconds, when the hole expands and its radial size becomes comparable to that of
the jet radius, the magnetic field has no time to diffuse inside, and the hole can be regarded as
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free of the magnetic field.  Therefore, this situation resembles that of a hollow jet that moves into
an external magnetic field.  Compression of the magnetic flux lines will result in slowing the
liquid metal expansion, i.e., the condition for growth of MHD Rayleigh-Taylor instability.
Development of MHD instabilities would lead to the destruction and fragmentation of the liquid
jet, forming droplets that splash everywhere with high velocities.  Further studies that take into
account surface tension and other effects are required.

SUMMARY

The thermoelastic response of liquid metal targets exposed to intense volumetric energy
deposition for short times was studied.  The sudden energy deposition causes an instant rise in
temperature that leads to a corresponding rise in the thermal pressure that causes excitation of
sound waves, i.e., shock waves and rarefaction waves.  During these events, pressure oscillates
with magnitude ∆P, corresponding to an initial thermal pressure of tens of katm.  Liquids are
frequently observed to withstand significant negative pressures (hydrostatic tensile stresses).
Yet, a liquid subjected to high negative pressures is metastable and cavities (voids) would arise
because of thermodynamic fluctuations.

The dynamics of liquid target oscillation in the presence of large negative pressure, and the
mechanism of fragmentation and its consequences are considered.  It was shown that a cavity
coming into existence initiated a shock wave.  This shock wave is actually a relaxation wave
when the stretched medium returns from low to normal density.  It was also shown that a cavity
coming into existence during the negative-pressure stage expands permanently and does not
disappear or collapse, even during the positive-pressure phase.  The failure to disappear or
collapse is a major difference between the cavity dynamics in a stretched medium and usual
cavitation, wherein vapor bubbles collapse during a phase of increased pressure, and is the result
of the “discharging” or “unloading” of the liquid medium by the relaxation shock wave that is
initiated by cavity appearance. Detailed calculations of cavity dynamics were provided for the
spherical and cylindrical target cases.

The calculations show that when the absolute value of negative pressure becomes higher than
the fracture limit Pτ (e.g., Pτ = 22.3 katm for pure mercury), the formation of cavities with an
initial size equal to or greater than the critical size Rcrit (4 Å for mercury at 22.3 katm) leads to
the release of elastic energy with supersonic velocity.  Therefore, the entire stretched area with P
< - Rcrit reaches a state in which the density corresponds to the common thermal expansion.  On
the other hand, the negative pressure cannot be < –Pxo because practically, the liquid as a whole
should break.  However, no reliable data are available on the thermodynamic properties of
liquids at high negative pressure.  If the free liquid metal cylinder is instantly heated to high
pressures of tens of katm, the negative pressure (especially due to cylindrical cumulative effects)
becomes less than the fracture limit, at least near the target axis.  Cavities (voids) that come into
existence quickly enough initiate relaxation shock waves that release elastic energy in the form
of kinetic energy of liquid motion.  These cavities soon join together to form an elongated
cylindrical cavity.  The expansion of this elongated cavity leads to the transformation of the
liquid metal cylinder into one or more cylindrical shells that are expanding with a radial velocity
determined by the stored potential energy, which is equal to the deposited energy less the
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remaining thermal energy.  Hollow cylindrical shells will then expand into the outer strong
magnetic field of the muon collider.  Compression of the magnetic flux lines will cause the liquid
metal to slow down, constituting a condition for the growth of MHD Rayleigh-Taylor instability.
Development of MHD instabilities would lead to the destruction and fragmentation of the liquid
jet, forming droplets that splash with high velocities.  Further studies that take into account
surface tension and other effects are required.
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