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ABSTRACT 
 

Light sources for extreme ultraviolet Lithography (EUVL) are continued to face challenges in the demanding 
performance for high volume manufacture. Currently EUV and beyond EUV (BEUV) community are focused on the 
dual-pulse laser produced plasma (LPP) using droplets of mass-limited targets. These systems require extensive 
optimization to enhance the conversion efficiency (CE) and increase components lifetime that requires significant 
experimental and development efforts.  

We continued to enhance our comprehensive HEIGHTS simulation package and upgrade our CMUXE laboratories 
to study and optimize LPP sources and to make projections and realistic predictions of near future powerful devices. 
HEIGHTS package includes 3-D detail description of all physical processes involved in LPP devices. The models 
continued to be well benchmarked in each interaction physics phase of plasma evolution and EUV/BEUV production as 
well as in the integrated LPP systems. We simulated LPP sources in full 3-D geometry using Sn and Gd droplets and 
fragmented targets composed of microdroplets as a result of prepulse or from mist of tiny droplets distribution. We 
studied mass dependence, laser parameters effects, atomic and ionic debris generation, and optimization of EUV/BEUV 
radiation output, the requirements for mitigating systems to reduce debris effects. Our enhanced modeling and simulation 
include all phases of laser target evolution: from laser/droplet interaction, energy deposition, target vaporization and 
fragmentation, ionization, plasma hydrodynamic expansion, thermal and radiation energy redistribution, and 
EUV/BEUV photons collection as well as detail mapping of photons source location and size. Modeling results were 
benchmarked against experimental studies for the in-band photons production and for debris and ions generation.    
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1. INTRODUCTION 
 
Dual-beam lasers interacting with small tin droplets are currently the most efficient systems for producing of 13.5 

nm photon source. The concept of the pre-pulse technique was initially applied for the optimization of extreme 
ultraviolet (EUV) sources produced from water droplets [1]. Later, experiments and modeling of dual-beam lasers with 
two wavelengths, fundamental wavelength of Nd:YAG for the prepulse and CO2 for the main pulse, showed significant 
increase in the CE from tin droplets [2]. Further analysis and optimization of laser parameters for the prepulse, the delay 
time between pulses, in combination with droplet size, showed another way of efficient target preparation to enhance the 
conversion efficiency (CE). This also includes, for example, applying the fourth harmonic of Nd:YAG laser as the most 
suitable laser for the initial, pre-pulse stage [3]-[5]. Lower laser reflection from the solid tin and higher plasma critical 
density for laser with 266 nm wavelength facilitated the entire evaporation of small, 10 - 20 µm, droplets [5]. This can be 
achieved at relatively low laser intensities, around 2x1010 W/cm2, that leads to low particles velocities in the developed 
plumes and more homogenous expansion of plasma/vapor cloud. Recent experiments with various materials showed 
large difference in the ablation rate between the 266 nm and 1064 nm lasers. For example, approximately ten times more 
of silicon and tin can be ablated by 266 nm laser in the case of planar targets [6],[7]. The evaporation rate of droplets can 
be even higher due to motion of the developed plasma around the droplet surface that prevents formation of an efficient 
shielding layer above the target.  

Near complete evaporation of small droplets permitted efficient absorption of the main laser photons. The expanded 
cloud of a relatively homogeneous mist allowed using beams with large spot sizes that significantly increased the CE of 
LPP devices. Furthermore, the dependence of the CE for different droplet sizes was predicted based on optimization of 
laser interactions with the evaporated and expanded target [5],[8]. These dependencies and limitations for laser pulse 
durations were explained by hydrodynamics effects.    
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The Nd:YAG dual laser system, with the parameters studied, produces less efficient source in comparison with CO2 

laser beam being the main pulse, however the source is more intense and brighter. Due to the two orders of magnitude 
difference in plasma critical densities between the two lasers, more dense plasma is created by Nd:YAG laser in the 
plume that results in more intense EUV photons radiation.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

a)                                                                                            b) 
 

Figure 3. EUV sources created in vapor/plasma plumes by a) Nd:YAG and b) CO2 lasers 

Figure 2. Snapshots of number densities distribution in vapor/plasma plume created from 30 µm droplet by 
pre-pulse laser with 266 nm wavelength at different times after pre-pulse: a) 50 ns; b) 150 ns and c) 300 ns 
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produced during previous laser/droplet interactions that can result in higher background pressure in the chamber. Figure 
8 shows that the efficiency of the source produced by CO2 laser could be two times higher in the presence of surrounding 
vapor, while the CE of similar system with Nd:YAG laser is reduced in comparison with vacuum conditions.  

Increase in the efficiency of CO2 device is related to the development of compressed plasma layer in surrounding 
vapor (Fig. 9) with optimum temperatures for EUV emission. Electron temperatures in the outer compressed layer reach 
25-30 eV that leads to producing EUV photons which can reach collecting surfaces without losses due to low electron 
densities in surrounding plasma and, therefore, low absorption of EUV radiation. The created source at these conditions 
has low intensity. However, the relatively large volume of this source can significantly affect the overall efficiency of the 
system (Fig. 10).  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 
5. CONCLUSION 

 
Requirements of high volume manufacture to develop cost-efficient and high power EUVL system promote further 

investigation of possible ways of source improvement. We integrated state-of-the art fundamental and detailed models of 
atomic and plasma physics and hydrodynamics processes in our HEIGHTS full 3D package for accurate calculations of 
EUV photons productions and collections and ways to enhance source efficiency. Our analysis showed that first 
harmonic of Nd:YAG laser can also be used as the main pulse in dual-beam systems. While the efficiency of Nd:YAG / 
Nd:YAG devices is lower in comparison with Nd:YAG / CO2 combination, produced source could be brighter and has 
smaller size that can be favorable due to the requirements needed for the optical collecting system. We also found that 
the residual background vapor that may exist in high-frequency operation, surrounding small droplets, can lead to more 
efficient sources produced using CO2 laser. Similar environment in Nd:YAG devices could lead to a reduced source 
efficiency in comparison with vacuum conditions.    
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