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ABSTRACT   

Planar slabs of pure Sn and Li were irradiated with 1064 nm, 9 ns Nd:YAG laser pulses. The resulting plasmas were 
evaluated with an absolutely calibrated extreme ultraviolet (EUV) power tool, a transmission grating spectrograph, a 
pinhole camera, and a Faraday cup. These diagnostic tools have allowed us to determine EUV conversion efficiency 
(CE), EUV spectral emission features, EUV-emitting plasma size, and the kinetic energies and fluxes of ions at various 
laser intensities for both Sn and Li plasmas. The maximum estimated CE values for Li and Sn plasmas are 1 ± 0.1 % and 
2 ± 0.2 %, respectively. The Li2+ Lyman-α line and Sn8-13+ lines generate the in-band emissions of Li and Sn. The 
intensity of Li2+ lines was found to increase with laser intensity.  However, the Sn unresolved transmission array (UTA) 
showed remarkable changes with at higher laser intensities, including the appearance of a spectral dip.  EUV plasma 
images showed that Sn plasmas take on a conical shape, as opposed to the hemispherical shape of Li plasmas. Ion debris 
analysis showed the kinetic energies for Li ions are less than that of Sn ions under similar conditions. Moreover, the 
kinetic spread of Li ions has been found to be narrower compared to the kinetic energy distribution of the Sn ions. We 
also compared the ion flux emitted by Sn and Li plasmas. 
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1.  INTRODUCTION  
Much research has been conducted on generating laser-produced plasma(LPP) sources emitting at 13.5 nm [1-5] from a 
number of different target materials, including Sn [2, 6], Xe [7], and Li [8]. The essential requirements of a LPP source 
for extreme ultraviolet lithography (EUVL) are a high CE (conversion from laser energy to 13.5 nm with 2% bandwidth) 
with minimum debris generation, as to prevent damage to the multi-layered mirrors (MLMs) which are critical to EUVL 
manufacturing systems.  
 
The EUV CE from a LPP plasma strongly depends on various laser parameters (wavelength [5], pulse width [4], spot 
size [4, 9], power density [10, 11], etc.) and target specifications (mass density [10, 12], target geometry [11, 13], etc.) 
Previous studies have clearly demonstrated that Sn plasmas are more efficient at generating in-band EUV radiation than 
Li or Xe plasmas. Depending upon the experimental parameters, reported Sn plasma CE values varied from 2-5% [4, 9, 
14], and from 1-2% [8, 14, 15] and 0.3-0.8% [7, 16] for Li and Xe, respectively. Apart from CE, the cleanness of the 
LPP source is extremely important for their use in EUVL. The LPP emits debris in the form of energetic ions, atoms, and 
molten droplets, which are difficult to control [6, 17-19]. This ablated target material vapor-deposits itself on various 
components within a direct line-of-sight of the plasma, including the surface of the MLM, which causes degradation in 
mirror reflectivity. Additional reflectivity losses are brought on through the ion-induced sputtering of the mirror itself. 
Previous studies showed that along with fast moving ions, Sn neutrals also contribute a significant reduction in MLM 
reflectivity [20]. Several ion and atom debris mitigation schemes have been proposed [6, 17, 21, 22], although they 
cannot completely mitigate the additional damage from neutrally-charged debris. Because of its negative effects, ion and 
neutral debris must be further characterized, so that effective debris mitigation schemes can be implemented.  
  
In this paper, we compared the EUV emission features, as well ion and atom debris, emanating from two efficient LPP 
target sources (Li and Sn) at 13.5 nm. We also investigated the effect of laser spot size and laser power density on the 
CE and the EUV spectral features of both Li and Sn plasmas. The ion fluence and ion energies for each material were 
measured, along with images and emission spectra of their plasmas. 

Extreme Ultraviolet (EUV) Lithography, edited by Bruno M. La Fontaine, Proc. of SPIE Vol. 7636,
763636 · © 2010 SPIE · CCC code: 0277-786X/10/$18 · doi: 10.1117/12.848318

Proc. of SPIE Vol. 7636  763636-1

Downloaded from SPIE Digital Library  Terms of Use:  http://spiedl.org/terms



 
 

 

2.  METHODOLOGY 
A schematic of the experimental setup is given in Figure 1. For producing plasmas, 1064 nm, 9 ns (Full Width Half 
Maximum (FWHM)) pulses from a Nd:YAG laser were used. Planar slabs of pure Sn and Li were mounted to a servo-
motor controlled XYZ translation stage inside of a stainless steel high-vacuum chamber, which was evacuated with a 
turbomolecular pump to a pressure < 10-6 Torr. The focusing lens was mounted on a micrometer-controlled translation 
stage, allowing for fine-tuning of the laser spot size. The target was translated between shots to refresh the target surface, 
and to mitigate the effects of target cratering. This new surface was exposed to a low energy “cleaning pulse” to ablate 
any oxide layers from the target before each measurement. 
 
The CE of the incident pulse energy to 13.5 nm radiation was measured with an EUV power tool, which consists of two 
Zr filters and a Mo/Si MLM to reflect the incoming plasma light into an absolutely calibrated photodiode. The 
photodiode signal is then displayed and recorded on an oscilloscope. The emission spectra of Li and Sn plasmas were 
recorded using a transmission grating spectrometer (TGS). The TGS utilizes a silicon nitride diffraction grating with a 
10,000 lines/mm resolution. The time-integrated spectra were then recorded with an EUV sensitive CCD camera. EUV 
images of the plasma were obtained by mounting a 50 μm pinhole at the end of a 49.2 cm tube, placed 51 mm from the 
target point, creating a simple pinhole camera with a magnification of 11. The pinhole camera employs a Zr filter which 
filters radiation in the 7-15 nm wavelength range.   
 
The fluence and kinetic energy of the plasma ions were measured with a Faraday cup (FC) mounted inside the chamber, 
17 cm from the target point at a 12° angle from the plane of the beam. The FC was biased with a DC power supply to the 
optimized potential difference of -31 V.  The ion current was measured by acquiring the voltage signal across a load 
resistor, and was viewed with a 350 MHz digital phosphor oscilloscope. 
 

 
Figure 1. Schematic of experimental setup. Optical components include a polarizing cube (C), a half-wave plate 
(WP), focusing lenses (L), reflector (R). (FC, Faraday cup; BD, beam dump; TGS, transmission-grating 
spectrograph).  

3.  RESULTS AND DISCUSSIONS 
LPPs are a highly transient phenomena, whose properties are strongly material and temperature dependent. The spectral 
emission features of the plasmas are dependent on their temperature and density. Typically, LPPs emit strongly in the 
EUV spectral region when heated to 20-40 eV [23].  The intensity of the laser beam determines the temperature of the 
plasma, through the degree of excitation of its constituent atoms. Along with spectral emission, the laser intensity also 
affects the kinetics of neutral and ion particles emanating from the plasma. Earlier reports showed that the average 
charge state of the Sn plasma is ~ 11 when the Sn plasma is heated to ~ 30 eV, which is the optimal condition for 
maximum CE [24].  Increasing the laser intensity leads to the production of highly charged ions with higher kinetic 
energies, which are more dangerous for the collector mirror in the EUV setup. We used a suite of diagnostic tools to 
investigate spectral and ion emission from Sn and Li produced plasmas, including in-band CE measurement, EUV 
spectroscopy, EUV pinhole imaging, and FC ion analysis. These studies are very useful for understanding suitable EUV 
emission conditions from Sn and Li plasmas, as well the nature of the debris they emit. Since Sn and Li are considered to 
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be potential targets for a LPP source, a comparison between the spectral and ion emissions with identical experimental 
parameters will be extremely useful for the ongoing development of EUV light sources.  
 
3.1 EUV emission features 
 
The fundamental Nd:YAG beam was attenuated by varying amounts through the use of polarization optics, allowing for 
the CE to be evaluated at many different laser intensities, as shown in Figure 2. The dependence of in-band CE for three 
spot sizes is given for Sn and Li. The planar target geometry emits EUV radiation through a solid angle of 2π steradians. 
The EUV measurements show that CE is highly dependent on target material, beam intensity, and laser spot size. Our 
measurements showed that Sn plasma provides a higher CE, reaching peak levels of 2%, as opposed to the Li peak of 
1%, which are consistent with previously reported values [8, 9, 25]. The optimal CE achieved is irrespective of the spot 
sizes used, and is consistent with recent reports of spot size dependence on Sn plasma CE [9]. The peak CE remains 
constant with varying spot size due to the balance between the lateral expansion-induced energy losses and the re-
absorption of the EUV light [9]. Visible emission images obtained with fast imaging clearly showed that with a smaller 
spot size the plasma expansion is nearly spherical, while with a larger spot size plasma expands cylindrically [26].  
 
A smaller spot size requires a higher intensity to reach the same CE as a large spot size, as seen in Figure 2. For 
obtaining the highest CE, ideal plasma temperatures and densities should be created for the longest possible period of 
time with the maximum size. The optimal temperature for in-band EUV production is ~ 30-40 eV. The changes in the 
spot size will affect the nature of the hydrodynamic expansion and confinement of the plasma [11, 26]. The magnitude of 
the plasma temperature is provided by a balance between incoming and escaping energy (laser absorption, radiation 
energy loss, plasma expansion etc.). Recent modeling studies of efficient EUV production at various spot sizes also 
predicted the requirement of a higher laser intensity for a smaller spot size [11]. In the case of larger laser spots, lower 
laser intensities are needed for efficient EUV production because of the plasma opacity, and the smaller laser spots 
create the opposite effect [11]. Hence, the hydrodynamic confinement plays a role in the right shift of CE maxima with 
smaller spot sizes.  
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Figure 2. The dependence of conversion efficiency on laser intensity is given for various spot sizes for Sn and Li 
plasmas.  

 
The saturation, or reduction of the CE, of Sn plasma at higher intensities after reaching the optimal CE could be due to 
opacity effects. It is known that the dense plasma generated from, and nearby too, a solid Sn target is optically thick to 
13.5nm light [27]. However, we noticed CE saturation in Li plasmas as well, especially at larger spot sizes, where the 
plasma evidently provides a slightly lower CE. For example, Figure 2 shows the estimated maximum CE with a 300 μm 
spot is 0.8%, while it increased to 1.1% with a 80 μm spot size plasma. 
 
EUV spectral studies are needed to investigate self-absorption properties of Sn and Li plasmas. Several spectra of both 
materials were recorded with laser pulses of increasing intensity, with a constant spot size of 80 μm, and are given in 
Figure 3. The EUV emission from the Sn plasma showed a broad-band emission constituted by several ionic stages 
(commonly called an unresolved transition array (UTA)) [5]. The UTA emission is concentrated around 13.5 nm, with a 
narrow band gap of 5–10 eV arising from the 4p64dn– 4p54dn+1 + 4p64dn−14f transitions of various Sn ions, ranging from 
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Sn6+ to Sn14+, with occupancy in transition levels from the range of n = 2 to n = 8 [28]. The main contributors of 
emission in the in-band region are Sn9+-Sn13+ ions. At high laser energies, a spectral dip at the peak of the UTA is very 
evident, which is mainly due to self-absorption due to opacity effects, as at high intensities the Sn plasma density 
increases until the plasma becomes optically thick, and reabsorbs the light. Along with the occurrence of a spectral dip, 
an enhancement in intensity is noted at the higher wavelength side of the UTA with increasing laser intensity. These 
enhancements are due to recombination effects, where ionized Sn atoms collide with free electrons in the plasma, 
causing a repopulation of the Sn8+-Sn10+ levels, where they strongly radiate outside of in the in-band region[28].  
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Figure 3. EUV spectral emission features of Sn and Li  plasmas. A transmission grating spectrograph with a 
resolution of 100 (λ/Δλ) is used for recording the spectra.  

 
Compared to Sn plasmas, Li plasmas possess discrete line structures. These structures became more intense with 
increasing laser intensity, but the features themselves remained unchanged. The emission spectra recorded from the TGS 
shows that the Li2+1s-2p transition (Lyman-α) line at 13.5 nm, as seen in Figure 3, lies completely within the 2% 
bandwidth of the Mo/Si MLM. It should be mentioned that the transmission grating spectrograph used in the present 
studies had only a resolution (λ/Δλ) of ~ 100; that is not adequate to resolve the finer details in the spectra. However, the 
effect of spot size on the CE shows the possibility of reabsorption/reheating in the plasma, causing the CE saturation. 
 
We also compared the emission volumes using the images from an EUV filtered pinhole camera, as shown in Figure 4. 
While the Sn plasma was bright enough to be imaged easily, imaging the Li plasma required taking a multiple-exposure 
of five separate plasmas. This demonstrates that the EUV emission from the Li plasma were significantly dimmer than 
those of a Sn plasma at a given laser intensity. This is because our pinhole camera integrates a spectral region from 7-15 
nm, an emission region capturing nearly all of the UTA for Sn, but only the Lyman-α line for Li. Plasma aspect ratios 
were measured from the drop-off from the image’s intensity profile peak to 1/e2 of that peak value The Li plasma had an 
aspect ratio of 1.22, and the Sn had a ratio of 1.26. Both plasmas have similar aspect ratios, despite having apparently 
different shapes. 

 
3.2 Faraday cup ion analysis 
 
In addition to radiating the 13.5 nm in-band light, a LPP will also release debris in the forms of energetic ions (the 
plasma itself), neutral particles, molten droplets ejected from the ablated target, and out-of-band emission [17]. Ionized 
and neutral particle flux causes the sputtering and implantation of the debris species into the MLM coating, lowering its 
reflectivity [20]. In order for the EUVL to be a commercially viable manufacturing technique, the MLMs must last a 
long time. Several mitigation schemes have been devised to improve MLM lifetime using magnetic fields[6, 22, 29], a 
gas curtain [17, 21], low-energy pre-pulses [2, 12], and mass-limited targets [10].    
 
The FC is of the simplest methods for analyzing ions from LPPs, but it is a useful tool for obtaining the integrated ion 
flux, and ion velocity, and thus, the kinetic energy distribution. Typical ion emission and kinetic energy profiles obtained 
from Sn and Li plasma measure with the FC are given in Figure 5. In these measurements the laser had an intensity of 2 
x1011 W/cm2, with a spot size of 80 μm. The ion TOF profile is represented by a sharp prompt peak, followed by a broad  
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Figure 4.   Images of Li and Sn plasmas. False-color has been added to the images to show relative intensities. The 
Li plasma images are multiple exposures of 5 pulses, and the Sn plasma images are of a single pulse. 

 
slower peak. The fast prompt peak in the ion signal is due to the photoelectric effect, and can be used as a time marker. It 
is very evident from the figure that Li ions possess a narrower kinetic profile compared to Sn ions. The estimated peak 
expansion velocities are 4.2±0.2 x106 cm/s for Sn ions, and 1.4±0.2 x107 cm/s for Li ions. However, due to their lower 
mass, the kinetic energy of the Li ions is considerably lower compared to the Sn ions. The kinetic energy FWHM spread 
of Sn ions was found to be 5X greater compared to Li ions at the laser intensity of 2 x1011 W/cm2. Under these intensity 
conditions, the average charge state <Z> of Sn plasma [24] should be ≥ 11, and ≥ 2 for Li. However, the plasma ions 
undergo three-body recombination while adiabatically expanding towards the detector. This three-body recombination is 
proportional to Z3Te

-9/2, where Te is the plasma temperature. This implies that Li atoms are less prone to recombination. 
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Figure 5. Typical ion profiles recorded with a FC is given for Sn and Li plasma. For these measurements the FC is 
positioned at 17 cm from the target at an angle 12º. The laser intensity used in this measurement is 2x1011 W/cm2. 
The kinetic distribution obtained from the time-of-flight ion signal is given in the right figure.   

 
The maximum probable kinetic energies, as well the ion flux of Sn and Li plasmas, depend on laser intensities, as shown 
in Figure 6. For both Li and Sn plasmas, both the maximum probable kinetic energy and ion fluence showed an 
exponential decay trend. The reduction in the increasing rate of the kinetic energies and ion fluxes at higher laser 
intensities could be due to plasma shielding and absorption. Previous studies with identical laser intensities [2] for Sn 
plasmas clearly showed the plasma could already be at the critical density for the pump beam wavelength. Once the 
plasma reaches the critical density, the remaining part of the laser pulse interacts with the plasma rather than the target 
material, effectively reducing the ion flux. The saturation of ion kinetic energy can also be related to the CE 
measurement, where we also noticed a similar saturation at higher intensities.  
 
Comparing the ion flux and kinetic energies of Sn and Li plasma, one can notice that the peak kinetic energies are 
always higher for Sn plasma, which could make them more deleterious for MLM mirrors. These results showed that 
implementing charged particle debris mitigation techniques (electric or magnetic field) is much easier for Li plasma. 
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However, FC studies showed that although they are less energetic, the ion fluence is significantly higher for Li plasma 
compared to Sn plasma.   
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Figure 6. Maximum probable kinetic energies of Sn and Li plasma and ion flux as a function of laser intensity. 
The smooth curves represent the best fit to the data.  

4.  CONCLUSIONS 
We compared the EUV and visible emissions, and ion debris features, of Nd:YAG laser generated Sn and Li plasmas.  
The conversion efficiency of the EUV radiation has been shown to strongly depend on laser spot size, laser intensity, and 
target composition. The Sn plasma reached a peak CE of 2%, and Li CE peaked at 1%. These peak CE values have been 
found to be independent of spot size, though the two materials reach their peaks at different intensities. The laser 
intensity required for the optimal CE value was found to be inversely proportional to the laser spot size. The observed 
saturation or reduction of CE in plasmas at higher intensities could be due to opacity effects. EUV spectral studies of Sn 
and Li plasmas created by pulses of varying intensity were performed to characterize self-absorption. The EUV emission 
of Sn plasma showed a broad-band UTA emission concentrated around 13.5 nm, due to emissions from the Sn9+-Sn13+ 
transitions. At high laser energies, a spectral dip at the UTA peak appears due to self-absorption. An enhancement in 
spectral intensity also appears at the higher wavelength side of the UTA with increasing laser intensity, due to 
recombination effects. Li plasmas possess discrete line structures (primarily, the Lyman-α line), which became more 
intense with increasing laser intensity without changing the spectral features. An EUV-filtered pinhole camera showed 
that the plasma plumes appear to take on different shapes, but have similar aspect ratios. 
 
FC analysis of Sn and Li plasma ion emission was used to generate ion and kinetic energy profiles. Li ions exhibit a 
much narrower kinetic profile than Sn ions, but the less massive Li ions have a considerably lower kinetic energy than 
the Sn ions. The plasma ions undergo three-body recombination as they expanded towards the FC, which implied that Li 
atoms are less prone to recombination. The maximum probable kinetic energies and ion flux of Sn and Li plasmas 
depends on the laser intensity, and display an exponentially decaying trend. Sn plasmas are found to be more damaging 
to MLMs due to their higher peak kinetic energies. The Li plasmas demonstrate greater ion fluence, but their lower 
energies would allow an easier implementation of electromagnetic charged particle debris mitigation systems.  
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