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When hard plasma disruptions produce melting of a surface layer on first wall components, the melt layer is in general also 

subject to various forces. Among these, the forces produced by eddy currents and the magnetic fields are the most severe, and 

they may cause the removal of the melt layer. It appears that one of the most effective mechanisms for removal is by a 

Rayleigh-Taylor instability. Numerical results are presented for both the most critical wavenumber and its amplification 

exponent as a function of two parameters which account for the effect of viscosity and surface tension, The results given for the 

critical amplification exponent allow an easy assessment of the stability of a melt layer when the forces are known. Examples of 

such an assessment are given, and it is found that within the range of estimated eddy-current forces, the melt layer may or may 

not be stable. Hydrodynamic instabilities induced by flow and tangential forces appear to be less severe than the 

Rayleigh-Taylor instability. 

1. Introduction 

Plasma disruptions in near-term tokamak devices 
can deliver a sufficient amount of energy to sections or 
components of the first wall that melting and vaporiza- 
tion may occur. The possibility for melting and the time 
sequence of melt layer formation and resolidification 
has been analyzed in great detail recently [1,2]. The 
emphasis of the previous studies was particularly on 
evaporation [ 1] and on the melt layer thickness and melt 

duration [2]. In assessing the consequences and damage 
to the component exposed to the plasma disruption, it is 
usually assumed that the melt layer will stay in place 

and resolidify. Accordingly, only the evaporation leads 
to a permanent loss of material and contributes to the 
wall erosion in addition to sputtering. There are, how- 
ever, other consequences of a hard plasma disruption 
aside from the thermal response of the wall. 

Large transient thermal stresses are generated in the 
part of the wall which remains solid. Because of the 
accompanying high temperatures, these stresses will 
quickly relax and, upon cooling, large and opposite 
residual stresses will remain in the wall. An analysis of 
this problem is given in [3]. 

The other consequence of a plasma disruption is that 
eddy currents are induced in the first wall as the plasma 
current decays. Their interaction with the magnetic fields 
can cause sufficiently large forces on the first wall and 
the melt layer that the liquid may be removed before it 
can solidify. 

The present paper deals with this latter possibility 

utilizing the results in [2] for the melt layer evolution 
and its duration. A critical issue in assessing the melt 
layer stability is the magnitude, direction, and time 

dependence of the forces generated by the eddy cur- 
rents. As the discussions in $2 will show, it is not 
possible to evaluate these forces precisely for the general 
case, as they depend critically on the detailed eddy-cur- 
rent pattern, on the time dependence of the plasma 
current decay, on the wall resistance, inductances. etc. 
Without a detailed specification of the wall configura- 
tion, the forces can only be estimated within a large 
range of possible values. 

The melt layer removal may take various forms such 
as run-off, shake-off, and formation of various instabili- 
ties. In the present paper we shall consider the possibil- 
ity of a Rayleigl-Taylor instability when the melt layer 
is subject to magnetic forces perpendicular to the melt 
surface and directed into the plasma chamber. Run-off 
at the edge of a component could be a serious problem 
also when the tangential magnetic forces are large. 
Vibrations induced by the plasma disruption could shake 
off the melt layer as well. The latter two possibilities 
are, however, even more design dependent than the 
possibility of a Rayleigh-Taylor instability. 

2. Forces 

The decay of the toroidal plasma current I, induces 
eddy currents in the metallic components of the first 
wall. These eddy currents interact with the toroidal and 
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vertical magnetic fields, producing both tangential and 

normal forces on the first wall components. The 
penetration depth for the eddy current after a time t is 
of the order of 2(p,,at)‘/‘, where p0 is the magnetic 
permeability and u is the electrical conductivity. After 1 
ms, the penetration depth is about 5 cm for stainless 
steel and 1 cm for molybdenum. We may therefore 
assume that the eddy currents are uniformly distributed 

throughout the first wall by the time a melt layer has 
been formed. The distribution and pattern of the eddy 

currents depends on the detailed shape, orientation, and 
on the insulating barriers of the components of the first 

wall. A general expression can therefore not be given for 
the eddy currents. Nevertheless, in order to obtain a 
reasonable estimate of the magnitude of the electromag- 
netic loads, the recent analysis of Mast and Preis [4] can 
be used as a guideline. 

The eddy currents induced in the poloidal direction 
and interacting with the toroidal field B, produce a 
pressure normal to the wall whose average value along 
the toroidal circumference of the vessel is approximately 

given by 

&B: exp( - t/rd) - exp( - t/T,) 
P=- 

PO@0 (w+w> - 1 ’ 
(1) 

where +. is the toroidal magnetic flux in the absence of 

the plasma, 6+ is the diamagnetic flux change produced 
by the plasma, p. is the magnetic permeability, T_, is the 
plasma current decay time, and 7w is the eddy current 
decay time, assumed to be larger than Q. Its exact 
value depends on the electrical resistivity of the wall 
material and on the mutual inductance of the various 
eddy-current circuits. The diamagnetic flux &#I is ap- 
proximately given by 

where the poloidal &, is the ratio of the plasma pressure 
and the magnetic pressure produced by the poloidal 
field BP. Et is the average toroidal field, whereas the 
value B, in eq. (1) is to be taken at the selected wall 
position. Its maximum value Btmax occurs on the in- 
board side of the first wall. Note that $B~ = AR, where A 
is the plasma cross-section. For a near-term tokamak 
reactor such as INTOR, the plasma parameters are of 
the magnitude shown in table 1. 

In a worst-case situation, when qP +C r,,,, the transient 
electromagnetic pressure on the wall as caused by the 
poloidal eddy currents could be as high as about 1 MN 
m-2. Segmentation of the first wall can of course re- 
duce the eddy current decay time so that 7Cp and 7w 

Table 1 
Typical plasma parameters for a tokamak reactor 

Parameter Value 

; 

7 MA 

A” 
3 
6 m2 

become more similar in magnitude. As a result, more 
realistic values for p are lower by at least an order of 
magnitude. Assuming a wall thickness of 1 cm, the 
electromagnetic forces per unit volume are then of the 
order of 10 MN mP3. Upper and lower values differing 
by one order of magnitude from this value cover then 
the possible range of eddy-current forces. 

Other forces which could cause melt removal are 
smaller than the above forces. For example, the gravita- 
tional force on stainless steel is 0.07 MN mP3. When 

evaporation occurs, a recoil pressure is exerted on the 
molten layer. This recoil pressure is of the order of the 
equilibrium vapor pressure. At a typical maximum 

surface temperature of 3000 K reached during a hard 
disruption, this vapor pressure is about 0.05 MN mP2 
for stainless steel. 

3. Rayleigh-Taylor instability 

On those locations where the eddy-current forces 
point into the plasma, the molten layer is subject to 
possible Rayleigh-Taylor instabilities. This type of in- 
stability occuring at the surface of a liquid layer has 
been studied in the past for both semi-infinite [5,6] and 
finite fluid layers [7,8]. Of particular relevance are the 

latter two references. Feldman [7] has treated 
Rayleigh-Taylor instabilities of melt layers on ablating 
bodies on re-entry into the atmosphere and subjected to 

deceleration forces, when the viscosity in the fluid ‘layer 
is either constant or exponentially increasing with depth. 

Liquid metals do exhibit a temperature-dependent 
viscosity according to the equation [9]: 

n(T) = 5.7 X 1O-4 T;/2M-‘/6p;2/3* 

Xexp[ E,(l/RT- l/RT,)] (3) 

where the viscosity is given in poise, T,, is the absolute 
melting temperature, M is the molecular or atomic 
weight, and p, is the liquid density. When the activation 
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energy Ev is unknown, it can be reliably estimated with 
the empirical formula [9]: 

logEv(kcal)= 1.36logT,-3.418 

in the case of metals. 

(4) 

For the temperature variations encountered in molten 

layers produced by plasma disruptions [ 1.21 the viscosity 
varies typically by a factor of 2-4. Only when excessive 
melting occurs at very high disruption energy fluxes will 

the viscosity variation through the melt layer resemble 

more the exponential increase with depth. 
The effect of the surface tension is to help stabilize 

any disturbance of the liquid surface. For accurate 
results, it is then important to utilize a temperature-de- 

pendent surface tension 

u(T) = o( T,) + (da,‘dT)( T- r,). (5) 

Values for both the liquid surface tension at the melting 
point, (I( T,), and the usually negative temperature coef- 
ficient (do/dT) have been compiled by Murr [lo]. 

Because of the minor variation in viscosity across the 

melt layer, the values chosen for both 9 and u were 
always for the surface temperature. Although an average 
value of 1) for the entire melt layer would perhaps be 
more appropriate, the present choice is more conserva- 

tive. 
With the assumption of uniform viscosity, the 

Rayleigl-Taylor instability of a liquid layer is de- 
termined by the following equation obtained from the 

derivation of Feldman [7]: 

D((Y,p)=4Cy2P(.2+P2)-(a*+P*) 

X(pcoshacoshp-asinhasinhp) 

-4a3P(acoshacoshP-PsinhasinhP) 

+aR(l -a’/W) 

X (psinhacoshp-acoshasinhP) =0.(6) 

Note that this equation is of a different form than the 
corresponding one in Feldman’s paper. 

This equation represents the dispersion relationship 
for surface waves of the form exp(ikx + Kt), where the 
wavenumber k = 2n/A is related to the parameter a by 

a = hk (7) 

and the amplification exponent K is related to p accord- 

ing to 

p* = a2 + (h&/f)& (8) 

Here, h is the melt layer thickness, f the force density. 

and 

i?= ( fp,)“‘h3/*/B (9) 

is the surface Reynolds number. It incorporates the 
effect of the viscosity on the melt layer stability, whereas 
the surface Weber number 

~=jP/u 

is a measure of the surface tension effect. 

(10) 

The dispersion relationship (6) yields the following 
results. As the wavelength A of the disturbance increases 
or the wavenumber a decreases, the amplification 
decreases also. Furthermore, when a approaches W’j2. 

the exponent K drops precipitously to zero. Therefore. 
disturbances with a long wavelength or with a wave- 

length shorter than 2?r( u/f)‘j2 are stable. Intermediate 
wavelengths may give unstable waves whose amplitude 
grows initially as exp( Kt). 

In order to find the critical wave with the maximum 
Value K, of the amplification exponent, a numerical 
search algorithm was used to deal with the extremely 
nonlinear equation D( a, p) = 0. The results for both the 
critical wavenumber a, and its corresponding critical 
exponent K, are shown in figs. 1 and 2, respectively. 

Fig. 1 shows that disturbances with small wavenum- 
bers are influenced only by the Weber number W. 

When the surface tension is high, or the melt layer 
thickness small, or the forces very low, the surface 
tension controls the instability. However, when the 
Weber number w increases, viscosity exerts a large 

influence on the instability as shown by the marked 
dependence on the Reynolds number i?. In fact, when 
this number becomes small as viscosity increases, the 
critical wavenumber becomes independent of W above 
values of w= 10. Similar trends are reflected also in the 

100c ,,,,,, ,,,.,,, 1 111,1,, ~.~~-jlOO 

W-PARAMETER 

Fig. 1. Variation of the critical wavenumber with surface Weber 
number. 
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dependence of the critical exponent K, on the two 
parameters E and w. For large values of W> 10 and 

small values of R< 10, K, is nearly independent of w 
and hence the surface tension. Conversely, when i? is 
large, K, depends mainly on w. 

Fig. 2 contains additional results of Feldman when 
the viscosity increases exponentially with depth. These 
results are shown as dashed lines, and have been ob- 
tained only for small values of the critical amplification 
exponent. The characteristic melt layer dimension in 
this case is the distance 8 over which the viscosity 
increases e-fold, and the Reynolds and Weber numbers 
are now 

R = ( fp,)“2S3’2/q and w= flP/rJ. (11) 
We find that the results for the variable-viscosity case 

show the same dependence as the results for constant 
viscosity, at least within the parameter range where both 
cases have been evaluated. In fact, the dashed lines 
coincide with curves corresponding to those for con- 
stant viscosity when 6 is replaced by 

s = (2/5)4’7h. 

A thick melt layer with exponentially increasing viscos- 
ity is therefore equivalent to a melt layer of constant 
viscosity and a thickness of 1.68816. It remains to be 
investigated, however, if this equivalence can also be 
applied to melt layers with larger surface Reynolds and 
Weber numbers. 

I IO IO2 

R OR k- PARAMETER 

Fig. 2. Variation of the critical amplification exponent with 
surface Reynold’s number. 

4. Application to melt layers 

During the course of a plasma disruption which 
results in surface melting, the surface temperature Tv, 
the melt layer thickness h, as well as the eddy-current 
forces f change continually with time. Therefore, when 
assessing the stability of a melt layer, two conditions 
must also be continually examined: first, the critical 
exponent KJ~) must be evaluated at each point in time 

based on the present values of T,(t), h(t), and f(t). 
Second, the amplitude factor exp[ kc( t)( t,,, - t)] should 
remain of the order of one for the remainder of the melt 

duration (f,,, -t), where t,, is the time elapsed be- 
tween the beginning of melting and the end of resolidifi- 
cation. 

Instead of imposing a limit on the amplitude factor, 
we may also require that 

r%(r>(t,,,-t)s’ 

as a condition for stability. In the following we shall use 
the term marginal stability whenever KJ t)( t,,, - t) is of 
the order of one, and unstable when this number greatly 
exceeds one. 

As an intermediate step for the evaluation of I,, 

the parameters R and w must be computed. Using the 

results of [2], the quantities R/f ‘I* and W/f are ob- 
tained and shown in figs. 3 and 4. The shape and time 

10-3 

10-6 

- without 

MO ss MO I ss 

I I I I I II 

2 4 6 6 IO I2 

“6 

1 
TIME IN rns 

Fig. 3. Time variation of R/f’/* for 800 J cm-* and 5 ms 

disruption time. 
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Fig. 4. Time variation of W/F for 800 J cm-2 and 5 ms 
disruption time. 

variation of these curves is mainly determined by the 
corresponding variation of the melt layer thickness h ( t ). 
and only to a minor degree by the temperature depen- 

dence of the viscosity and the liquid surface tension. 
Since neither the precise magnitude nor the time 

dependence of the electromagnetic forces is known, a 
detailed stability analysis of the melt layer as a function 
of time is not warranted. Instead, we consider only the 

instability when the melt layer has its maximum thick- 
ness, and hence, the parameters E/f ‘I2 and m/f as- 
sume their greatest values. Using again the results of [2], 
the maximum parameters are listed in table 2. Based on 
these values and using the results of fig. 2, the critical 

exponents K, are evaluated for three different values of 
the electromagnetic force, namely 1, 10, and 100 MN 

mP3. 
If we assume that the melt layer has a remaining life 

of about 3 ms, then K~( tres - t) are given by the last 
three columns of table 2. It is seen that the magnitude of 
the electromagnetic force has a decisive influence on the 
critical exponent. On the other hand, the value of the 
energy deposited has only a secondary effect as long as 
it results in a maximum melt layer thickness of the same 
order of magnitude. 

It can be concluded that the melt layer remains 
stable for the lower value of the electromagnetic force, 

i.e. for 1 MN m- 3. Marginal stability or approaching 
instability is obtained for medium value of the force, 10 
MN mP3, whereas melt removal is certainly indicated 
for the highest values of the electromagnetic force of 

100 MN m-‘. 

Table 2 
Melt layer parameter for a 5 ms plasma disruption 

Energy Vapor 
(J cm-2) shielding 

Material Max. melt R/f ‘/2 W/f KC(t,,, -t) 
thickness (10W4 ms kgm’j2) (10e9 m3 N-‘) 1 10 100 
(am) (MN mm’) 

400 

800 

1200 

yes ss 109 1.8 
no ss 109 2.9 

yes ss 106 1.9 
no ss 80 1.5 

yes ss 93 2.6 
no ss 60 1.0 

400 

800 

1200 

yes MO 78 6.2 
no MO 90 8.3 

yes MO 142 2.3 
no MO 188 4.0 

yes MO 186 3.8 
no MO 183 3.3 

7.3 0.03 1.08 10.3 
8.4 0.08 1.30 10.3 
7.4 0.05 1.10 9.75 
4.3 0.03 0.95 9.21 
7.1 0.07 1.17 10.1 
2.5 0.02 0.73 8.79 

2.3 0.006 0.47 6.33 
3.1 0.01 0.52 6.5 I 

10 0.08 1.15 9.12 
19 0.10 1.36 11.3 
18 0.09 1.29 10.9 
17 0.09 1.27 9.9 
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5. Discussion 

The electromagnetic forces on the melt layer due to 
eddy currents appear to be large enough to cause melt 
removal by a Rayleigh-Taylor instability. The present 
work shows, however, that melt removal can be avoided 
by proper design such that the eddy-current decay con- 
stant is of similar order of magnitude to the plasma 
current decay time in a hard disruption. It appears then 
that with appropriate designs, the eddy-current forces 
can be minimized and the Rayleigh-Taylor instability 

can be avoided. The analysis presented in this paper can 
be easily extended to perform a step-by-step instability 
assessment when both the surface temperature, the melt 

layer thickness, and the eddy-current forces are known 
as a function of time. If the eddy currents peak before 
the melt layer has fully formed or after it has resolidi- 

fied to a large extent, then melt removal can again be 
avoided even though the maximum eddy-current forces 
could be large. The present model together with the 
previously developed code for computing melting and 
evaporation [1,2] can provide an important design tool 
for limiters and first wall components. 

In the above analysis of the melt layer stability we 
have only considered the component of the eddy-cur- 
rent forces perpendicular to the wall surface. Tangential 
components will, however, be present as well. This 
component will induce a flow of the melt layer similar 
to the flow of a liquid layer on an inclined plane. 
Hydrodynamic instabilities are known to occur when 
the Reynolds number R’ = k/n exceeds a critical value; 
here, k is the mass flow rate per unit span of the 
stream. 

A limited investigation of this particular hydrody- 
namic instability has been carried out by Benjamin [ 1 l] 

for small Reynolds number R’ and for a liquid layer in 
uniform laminar flow running down an inclined plane. 
If we apply his analysis to our present situation we find 
that the critical amplification exponent for this flow 
instability is given by 

where 8 is the angle between the force per unit volume 

acting on the liquid and the surface normal. For a 
tangential load, 0 = 7r/2, and the critical exponent is 

found to be 

where Ris given by eq. (9). Using the values of K/f ‘/2 
listed in table2 and assuming the same range of values 

for the tangential forces as for the perpendicular ones, 
we find that K: K K,. Hence, the Rayleigh-Taylor mode 
is always more unstable than the flow mode, and there- 

fore, a melt layer which is Rayleigh-Taylor stable should 
also be stable under the influence of comparable 
tangential forces. 
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