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Simulation of Rapid Heating in 
Fusion Reactor First Walls Using 
the Green's Function Approach 
The solution of the heat conduction probem in moving boundary conditions is very 
important in predicting accurate thermal behavior of materials when very high 
energy deposition is expected. Such high fluxes are encountered on first wall 
materials and other components in fusion reactors. A numerical method has been 
developed to solve this problem by the use of the Green's function. A comparison is 
made between this method and a finite difference one. The comparison in the finite 
difference method is made with and without the variation of the thermophysical 
properties with temperature. The agreement between Green's function and the finite 
difference method is found to be very good. The advantages and disadvantages of 
using the Green's function method and the importance of the variation of material 
thermal properties with temperature are discussed. 

1 Introduction 

Large energy deposition and intense heat fluxes are en­
countered on fusion reactor first wall components either due 
to x-ray and ion debris in Inertial Confinement Fusion (ICF) 
reactors or during a plasma dump in magnetic fusion reactors. 
Sizeable temperature excursions, resulting in melting and in 
some cases evaporation of the metallic components, have 
been observed [1,2]. Although the analysis in this paper could 
be applied to any system where large energy deposition in 
short times is expected, the relation to fusion reactors is of 
particular importance to the design of the vacuum chamber. 
Recently a model has been developed by the authors [3] to 
accurately solve the heat conduction equation for this 
problem by finite difference methods. In this model, the 
surface temperature is determined by both the boundary 
conditions as well as by the kinetics of the evaporation 
process. The correct boundary condition entails partitioning 
of the incident energy flux into conduction, melting, 
evaporation, and radiation. Consequently, the heat con­
duction problem is one involving two moving boundaries, one 
being the melt-solid interface, and the other the surface 
receding as a result of evaporation. The kinetics of 
evaporation establish the connection between the surface 
temperature and the net atom flux leaving the surface, taking 
recondensation into account. 

In this paper, the solution of this heat conduction problem 
in moving boundary conditions is presented by the use of the 
Green's function method. The Green's function method 
provides an easy and fast way of calculating the temperature 
rise within a reasonable range of accuracy. The finite dif­
ference approach consumes large computer time because of 
the limitations on both the maximum time step and zone 
thickness required for the stability of the solution. A com­
parison between the Green's function solution and the finite 
difference one developed in previous work [3] is also 
presented. This comparison with the finite differnece methods 
is made with and without the variation of the material thermal 
properties with temperature. 

Although the results presented for carbon in this paper only 
consider one moving boundary at the surface because of 
vaporization (since carbon does not melt), the analysis is 
presented generally for the two moving boundaries to give a 
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complete description of the possible transformations that can 
take place during rapid heating of wall materials. 

2 Formulation of the Heat Conduction Problem 

Consider the first wall or the area of deposition as a semi-
infinite medium. This is reasonable in view of the short heat 
penetration depth during a plasma disruption in magnetic 
fusion rectors or target debris deposition in ICF reactors. 
Under a heat flux F(t), the temperature distribution T(x,t) 
must then satisfy the heat conduction equation 

dT 
pc—-V>kvT=q(x,t) (1) 

dt 

where 
p = density 
c = specific heat 
k = thermal conductivity 

q(x, t) = volumetric energy deposition rate 
All the thermophysical properties are functions of the local 

temperature. Initially the temperature is assumed to be 
constant throughout the material. The boundary conditions 
are that the back temperature, i.e., 7\,ack = constant for large 
distances x and at any time t, and on the surface the heat flux 
is given by 

dT 
F(t) = - k(Tv)—- + p(.Tv)Lvv(Tv) + ae(Tt - T*0) 

dx 
(2) 

where Tv(t) = 7(0, t), Lv is the heat of vaporization, and 
v(Tv) is the velocity of the receding surface. This velocity is a 
function of the instantaneous surface temperature and other 
material parameters. Furthermore, the radiative heat transfer 
term contains the Stefan-Boltzmann constant a; e is the 
emissivity of first wall material; and T0 is the surface tem­
perature of the cold portion of the first wall inside the reactor 
cavity. For the radiative heat loss, it is assumed that parts of 
the first wall (mainly in magnetic fusion reactors) not struck 
by the plasma dump remain at the steady-state temperature 
T0. Thus radiation heat flow is assumed from hot regions (T„) 
where disruptions occur to the colder parts (T0) of the 
unaffected areas. In ICF reactors, this term goes to zero since 
a microexplosion reaction is assumed to be symmetrical and 
the temperature will be the same everywhere. 

The general heat-conduction equation with constant 
thermal properties can be written as 
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Fig. 1 Schematic representation of solid-liquid-vapor interfaces 

dT 
pc-—~kV2T=q(x,t) 

at 
(3) 

where p, c, k are independent of temperature. For a semi-
infinite medium, the Green's function is given by 

G(x, t, x', t') = 
1 Ix-xT 

(e 4 a " - ' ' ) +e 4-<'-' '»J (4) 
2^Ta((-t') 

where a is the thermal diffusivity. The general solution for the 
temperature rise due to any deposition function is given by [4] 

T(x, ;t)=\ \ — q(x', t')G(x, t, x', t')dx'dt' 
J (' Jx' pC 

(5) 

Once melting occurs, the condensed phase consists of two 
regions 

(a) s(t)<x-<m(t) for the melt layer 
(b) m(t)<x for the solid phase 

where 

s(t) is the instantaneous distance of the melted surface. 
m(t) is the distance of the melted layer from the surface (as 

shown in Fig. 1). 

The boundary conditions are now that at x = m(t) 

Ts(m(t),t) = T,(m(t),t) = Tm 

and 

-K, 
dT, I 
dx |m(r) 

K, 
dx mil) 

+ psLfw(t) 

(6a) 

(6b) 

where Tm is the melting temperature; the subscripts s and / 
refer to solid and liquid regions, respectively; Lf is the latent 
heat of fusion; and 

dm 
* " M = - r - (7) 

dt 
is the velocity of the melt-solid interface. 

If the heating is continued long enough and at a sufficiently 
high rate, significant vaporization may occur from the sur­
face, assuming that the melting material stays in place. It is 
necessary to account for the receding surface at the interface 
between vapor and solid or liquid. This can be done by in­
troducing a moving coordinate system 

z(t) = x-s(t) (8) 

for which the surface always remains at z = 0. Transforming 
the heat conduction equation (1) or (3) to this moving frame 
gives 

pc{^ + ^:-~)-V-kVT=q(z, t) (9) 
dt dz 

where 

dz_ 
dt 

ds(t) 

dt 
= -v(t) (10«) 

v(t) = velocity of the receding surface. This velocity is a 
highly nonlinear function of the surface temperature. Models 
to calculate surface velocity and evaporation are given in 
detail in (3). In these models, the surface velocity is given by 

x4AP (T ) 
v(t) = 5.8xl0-2 ^Z„[o.8+0.2e- ' / 1 0 Tc]cm/s (106) 

p(7,„)V7,„ 

where 

x = sticking probability (usually = 1) 
A = a tomic mass number 

P„ = vapor pressure (Torr) 
TC = vapor collision frequency (s ~ ' ) . 

The kinetics of evaporat ion establish the connection between 
the surface temperatures and the net a tom flux leaving the 
surface. Since the m a x i m u m tempera ture will be at the sur­
face, no boiling phenomena is assumed to take place. Con­
sequently, there is no specific tempera ture where a phase 
change from liquid to vapor phase can occur. Rather there is a 
cont inuous flow of vaporized a toms in which the ra te of 
mater ia l removal depends only on the surface tempera ture , 
the corresponding vapor pressure, and the type of wall 
mater ia l . 

Substi tut ing equat ion (10a) into equat ion (9) gives 

dT dT 
pc- pcv(t) V 4 V T = 

dt dz 
q(z,t) (11) 

The main difference in this equation is that it includes the 
convective term v(t)dT/dz. This term is important in the case 
of intensive evaporation if we are to obtain accurate 
calculations of the temperature. The surface boundary 
condition is then given by 

F(t)= -k 
dT I 

dz lz=0 
+ pL„v(t) + <ye(n-Tt) (12) 

where 

v(t) is again the velocity of the receding surface 
F(t) is the incident heat flux 

Equation (11) can be written as 

pc 
dT(z, t) 

-kv2 T(z, t) = q(z, t) + pcv(t) 
oT(z, t) 

(13) 

The right-hand side of equation (13) consists of the 
volumetric energy deposition function and a convective term 
pcv(t) dT/dz, which could be treated as a part of the 
deposition function. Then equation (13) can written as 

pcdT^! ° - k V 2 T ( z , t) = q'(z, t) (14) 

where 

dt 

q'(z,t) = q(z,t) + pcv(t) 
dT(z, f) 

dz 
(15) 

The solution for the temperature rise due to the modified 
deposition function given by equation (15) and boundary 
condition in equation (12) is given by [5] 
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T{z,t)=\ [ —q'(z',t')G{z,t.z,,t')dz'dt' 
•II' J x' pC 

-af dt'G(z, t,0,f) 
dT(0,t') 

dz 
(16) 

From equation (12) the gradient of the temperature can be 
represented by 

97X0, t) 

dz 
= PLuv{t) + ot{Tl-n)-F{t) (17) 

Substituting equation (17) and (15) into equation (16) yields 

Tlz,0= — [ \ (q(z',t') + pcv(t')VT(z',t')) 
pC J I' Jx' 

G(z,t,z',t')dz'dt' (18) 

+ — f Gfe /, o, t'mn-pLMn-otcn - itw 
PC J I' 

where 

VTfcO = 

T„ = 

where 

T{x„, t„) is the temperature at any point x„ and time t„. 

W( is a weighting factor depending on the method of 
integration. 

At,- is the incremental time step. 

In the second part of the first integral of equation (19), the 
Green's function possesses a singularity when // — t„. To 
avoid this singularity, the last time step is made to be much 
smaller compared to any other time step, i.e., 

M„ < < M( (20) 

where 

t„_l=t„-M„ (21) 

It can easily be shown that [6] 

1 
Lim - r - T = 
e-0 2V7Ta£ 

4ae - 5(x-x') (22) 

dT(z, t) 

dz 

7(0, t) 

The difficulty in calculating the temperature rise from 
equation (18) is that both v(t) and VT(z, t) are functions of 
the current temperatures, which are unknown. This is also 
true for the radiative heat transfer term in the second integral 
of equation (18). Although calculating the surface velocity, 
v(t), requires only the knowledge of the surface temperature, 
the term V T(z,t) requires the current temperature distribution 
throughout the entire space. 

A good approximation for the solution of equation (18) is 
to use the numerical techniques developed in [6]. In these 
techniques, space and time are divided into many divisions 
forming mesh points. The integrals over the time in equation 
(18) are replaced by a summation over the discrete values of 
time. The integration over the time is carried out from the 
initial time (t = 0) up to the time where the temperature is 
needed (i.e., T„). The integration over space is carried out 
over the entire space. Each time integral term in equation (18) 
is replaced by two parts. The first part is a summation from 
the initial time and up to the time before the last (i.e., '„_i). 
The second part is when the time approaches the time at 
which the temperature is needed (i.e., /„). Then the solution 
for the temperature increase (at any point x„ and at time t„) 
can be written as 

where b{x-x') is the cronial 6-function. Using this result the 
last term of the first integral in equation (19) can now be 
written as 

, o o j 

w„ M„ \n—[q(x',t;)+ pcv(tfi V 7X*',//)] Lim 

G(x„,t„,x',tj) dx' 

= w„M„ \ —lq(x', t!) + pcv(t,') V7X*', //)][8(x-x') 
Jo pc 

+ 8(x + x')]dx' 

It can also be shown that [4] 

lf(x',t)8(x-x')dx'=f(x,t) 
\f(x',t)5{x + x')dx'=f( 

;t) -) 
-x,t)i 

(23) 

T{x,„t„)= X) w,-AM —[q(x',t;)+pcv(t;)VT(x',t')] 

,rr0 Jo pc 
G(x„,t„,x',t!) dx' 

, 0 0 J 

+ w„A/„Lim —lq(.x',t;) + pcv(t;)vTOc',t;)] 
r,-t„ Jo PC 

G(x„, t„,x', t,')dx' 

+ — U Mi[F(t;)-pLDv(t;)-K(Ti(0,t;)-T4
0)] 

Pc t-=o 

G(x,„ t,„ 0, tl) 

+ —M„[F(tn)-pLvv(tn)-oe(Ti{Q, t„) 
pc 

Then substituting equation (22) in equation (19) and using the 
result from equation (23), the temperature rise in equation 
(19) reduces to 

T(x„, t„)= . . . +w„M„ — [q{x,„ t„) + pcv(t„)VT{x„, /„)] 
pc 

+ - E umti) 
Pc ,fz0 

-pL„v(t!)-ae(T*(0, ?/) - 7^)]G(x„, /„, 0, //) 

+ — W(tn) - PLv(t„) - ae(r»(0, t„) - 1%)\ - J L e - c ^ / ^ , , ) ^ 
pc 2V Tra 

(24) 

where 

and 

since 

and 

] 0 dx'q{x', t„)8(x„ -x') = q{x„, t„) 

dx'vT(x', t„)b(x„ ~x')=VT(x„, t„) 

Q(~x„,t„) = Q 

^ ) ]2vi:e"•v" /4aA'" , (19) 

VT(-x„,t„) = 0 

Again the R.H.S. of equation (24) contains terms that are 
functions of the current unknown temperatures. These can be 
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Fig. 2 Comparison of surface temperature rise for carbon for 400 
J/cm2 deposited in 20 ms by different methods 
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Fig. 3 Carbon surface velocity for 400 J/cm2 deposited in 20 ms by 
different methods 

approximated by using the temperatures from the previous 
time step which are known. By choosing the increments 
between time steps small enough, the solution of equation (24) 
yields an accurate approximation to the integral equation 
(18). These choices always involve a compromise between 
accuracy and computer time. However, the required time step 
for these calculations is found to be much larger than the one 
required by the finite difference methods to solve the same 
problem. 

The solution of equation (24) is implemented in the com­
puter code ATHERMAL [7], This equation can be used to 
determine the thermal response of fusion first walls both in 
inertial and in magnetic confinement reactors due to any kind 
of incident radiation, such as laser, x-rays, heat flux, or ions 
(light or heavy) for inertial confinement and plasma ions in 
magnetic confinement reactors. 

3 Test Case 

To test the accuracy of the solution for the moving 
boundary problem developed in this study, a comparison with 
the finite difference method is made. An example of the 
plasma disruption case [3] is considered where 400 J/cm2 of 
plasma energy is deposited in a carbon first wall in 20 ms 
duration when the plasma suddenly and for unkown reasons 
becomes unstable. Carbon does not melt so only one moving 
boundary at the surface is considered in the solution of the 
heat conduction equation. The comparison is made between 
the finite difference with and without the variations of the 

thermal properties with temperature. In the Green's function 
method, it is assumed that the thermal properties are constant 
and equal to those of the finite difference with constant 
properties. The thermophysical properties used in these 
calculations are given in [8]. Perturbation methods to account 
for the variation of thermal properties with temperature in the 
Green's function method are developed in [6]. A solution for 
the two moving boundaries problem where the material could 
change phase beside the surface moving boundary is also 
implemented in the computer code A*THERMAL. 

4 Results and Discussion 

The surface temperature as a function of the deposition 
time for the three methods, i.e., finite difference with variable 
properties, finite difference with constant properties, and the 
Green's function is shown in Fig. 2. The agreement between 
the Green's function and the finite difference with constant 
properties is very good as seen from Fig. 2. The little dif­
ference between the two methods, which is less than 3 percent, 
could be explained by the size of the time step chosen for each 
method. Although the Green's function method seems to 
require more calculations than the finite difference, its time 
step is much larger and its calculation is more straightforward 
than that for the finite difference approach. The effect of the 
variation of thermal properties on the surface temperature 
can also be seen from Fig. 2. The constant thermal properties 
chosen for Green's function and the finite difference were an 
average over a high temperature range. Because the lower the 
temperature, the higher the conductivity for carbon, the finite 
difference with variable properties has lower temperature 
than the other two methods either at earlier times in the pulse 
or at longer times after the end of the disruption. 

The velocity of the receding surface, v{t), as a function of 
time for the three methods of calculation is shown in Fig. 3. 
The lower surface velocity at earlier times for the finite dif­
ference with variable properties is due to the lower surface 
temperature because of higher thermal conductivity. The 
difference between the finite difference with constant 
properties and Green's function is also illustrated in Fig. 3. 
The agreement between the two methods is considered very 
good. The slightly higher velocity predicted by Green's 
function is due to the slightly higher surface temperature. 
Because of the highly nonlinear dependence of the surface 
velocity on the surface temperature, the difference between 
the surface velocity calculation by Green's function and by 
the finite difference methods is larger than the difference in 
calculating the surface temperature. 

The amount of the total material vaporized can be 
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Fig. 6 Comparison of temperature rise for carbon for 400 J/cm2 

deposited in 20 ms by different methods at x = 70 microns 

estimated by integrating the velocity of the receding surface 
over the pulse duration time. Figure 4 shows the amount of 
carbon varporized as calculated by the three different 
methods. The good agreement between both the finite dif­
ference methods, i.e., with and without the variation of 
thermal properties, is not because of the insignificance of the 
variation of the thermal properties with temperature, but 
rather because of the chosen value for the constant properties. 
This can be seen from Fig. 3, where although the velocity of 
the surface for the variable properties is lower at earlier times 
of the pulse, it becomes higher than the velocity for the 
constant properties near the end of the pulse. This incidentally 
has the effect of producing almost equal material vaporized 
from carbon for these two methods. On the other hand, Fig. 4 
also shows about 10 percent higher total material vaporized 
by Green's function methods than the finite difference with 
constant properties. Although the surface temperature 
calculated using Green's function is only slightly higher than 
that calculated by the finite difference, and even lower after 
the end of the disruption time, the strong dependence of the 
evaporated material on the surface temperature and the in­
tegration of the surface velocity over all the pulse duration 
causes larger differences. After the end of the pulse the 
temperature drops very fast to where there is no significant 

vaporization occurring. So the slightly lower surface tem­
perature calculated by Green's function after the end of the 
pulse will not affect the total material evaporated. 

The temperature distribution inside the bulk of the first 
wall material is also calculated using the three methods, 
Figures 5 and 6 show the temperature distribution of carbon 
at distance x - 14 and 70 microns from the surface. Because 
of the lower temperature inside the material, the difference (at 
x = 14 and 70 microns) between the finite difference with 
variable properties is larger than the difference between the 
other two methods. The larger the distance into the material, 
the lower the temperature and the larger the effect of the 
variation of the thermal properties. The agreement between 
Green's function and the finite difference with constant 
properties at larger distances into carbon is still very good, as 
can be seen from Figs. 5 and 6. 

5 Conclusions 

A method has been developed to solve the heat conduction 
problem with moving boundaries and other boundary con­
ditions by the use of Green's function. The agreement of this 
solution with the method of the finite difference to solve the 
same problem is seen to be very good. The advantage of using 
the Green's function method is that it provides an easy and 
fast way of calculating the temperature rise in the material. 
This is because of no limitations on the time step or the mesh 
size used for the calculations. However, for more accurate 
results, the finite difference method is recommended, 
especially when evaporation is to be evaluated from these 
temperatures. The variation of the thermal properties with 
temperature can be very important in calculating accurate 
temperatures, especially in the case of very high energy 
depositions or if the material undergoes a change of phase, 
This is because of the larger differences between the solid- and 
liquid-phase properties. Because of the highly nonlinear 
dependence of the receding surface velocity on the surface 
temperature, a small change in calculating the surface tem­
perature could result in large differences in the surface 
velocity, and consequently larger differences in calculating the 
total material removed from the surface by evaporation. 
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