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During plasma instabilities in tokamak devices, metallic plasma facing components (PFC) undergo surface
vaporization and melting. Macroscopic losses of melt layers are of a serious concern to the lifetime of PFC,
the damage of nearby components, and potential core plasma contamination. A normal or inclined
plasma stream flowing at the melt layer surface of PFC at very high velocities (�105 m/s) can induce
Kelvin–Helmholtz (K–H) instabilities. We present an extensive linear stability theory and capillary drop-
let ejection model adapted to the problem of melt layer erosion and splashing. Based on this linear anal-
ysis, the stability criterion is established accounting the influence of the thicknesses of both plasma
stream and melt layer. The growth rate of the most unstable wave is investigated with respect to different
parameters such as plasma density and velocity, material properties, and melt layer thickness. A capillary
droplet ejection model is then developed and used to analytically estimate the erosion rate of the melt
layer for tungsten and aluminum targets. The present work brings a detailed understanding of the onset
of K–H instabilities developed in melt layers due to plasma stream impact and builds a theoretical basis
to estimate a macroscopic erosion rate, material losses and lifetime for PFC.

Published by Elsevier B.V.
1. Introduction

In a tokamak chamber, during normal or off-normal operating
conditions, plasma facing components (PFC) are subjected to
high-energy depositions (�10 to �100 GW/m2 during 0.1–1 ms)
as a result of plasma instabilities such as disruptions, giant edge-
localized modes (ELM), and vertical displacement events [1]. The
immediate consequence is vaporization and melting of PFC.
Although the vapor-shielding phenomenon, i.e., accumulation of
the materials own vapor in front of the incoming plasma stream,
considerably reduces material losses from the surface [2], the con-
tinued plasma-target interaction can cause consequent damage to
PFC due to macroscopic erosion of the developed melt layer, whose
thickness is much larger than the net surface vaporization and can
range from tens to hundreds of microns per one event of plasma
instabilities [3].

The melt layer erosion of tungsten and aluminum has been
investigated both theoretically [4,5] and experimentally [6,7].
The experimental observations show the ejection of liquid metal
droplets during heating of the target. Different phenomena like in-
tense boiling and hydrodynamic instabilities are identified as the
main erosion mechanisms. The models implemented in the current
computer codes [8,9] provide an estimate of the erosion rate of the
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metallic targets. A more detailed physical understanding of the
erosion mechanisms is required to improve the computational
modeling and provide realistic lifetime estimates of PFC.

As discussed in [10,11], the interaction between the plasma
stream and the melt layer is seen as a parallel two-fluid flow. In
the inviscid model, due to the high velocity difference, Kelvin–
Helmholtz (K–H) instabilities arise from small interfacial perturba-
tions. The early exponential growth stage of the waves was well
characterized using the linear theory described in detail by Chan-
drasekhar [12] or Drazin and Reid [13]. Since perturbations with
a wide range of wavelengths are present at the surface of the melt
layer, the behavior of the most unstable wave should provide a
good estimate of the arising K–H instability characteristics. The
late behavior of the most unstable wave is characterized by the
ejection of capillary droplets. This theory was first presented for
the case of laser-pulse induced melt droplet ejection [14], where
the K–H instabilities are generated by the high dynamic pressure
qpV2

p (�45 MPa) of ablated vapor flux at the target surface, where
qp and Vp are respectively the density and the velocity of the
plasma. Later the theory of capillary droplets escape due to K–H
instabilities was used to describe the interaction of plasma stream
(�1 MPa) with tungsten melt layer [5]. However, at lower plasma
dynamic pressure (�0.01 MPa), the computational fluid dynamics
(CFD) simulations [10,11] show the growth of continuous liquid
tungsten ligaments for a certain range of perturbation wave-
lengths, which eventually breaks into droplets. Dedicated melt
experiments carried out in the tokamak TEXTOR device also
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demonstrate the loss of molten tungsten in the form of continuous
fine spray with droplets [15]. Therefore, the formation of single
droplets or continuous droplet-like ligaments, depending on
parameters such as the plasma dynamic pressure, should be inves-
tigated in more details.

In the present work, a comprehensive linear stability theory is
presented and a detailed analysis of K–H instabilities, in the frame
of plasma and melt-layer interaction, is performed. First, the stabil-
ity criterion, the cut-off wavelengths, etc., are investigated. Then,
the behavior of the most unstable wave is studied in the linear
stage and extended to the non-linear stage using the above quoted
capillary droplet theory. Finally, a one-dimensional erosion rate
due to K–H splashing is derived. Overall, the influence of different
parameters such as the thicknesses of the plasma stream and the
melt layer, the plasma density and the materials properties (den-
sity and surface tension) is studied and discussed. Furthermore,
the implication of melt layer splashing and loss on the PFC lifetime
is briefly discussed.
2. Theory

We assume that the perturbation normal to the melt layer sur-
face has the shape of the following complex wave function [13]:

n̂ðs; xÞ ¼ n0 expðiðxsþ kxÞÞ ð1Þ

where n0 is the amplitude of incipient surface perturbations, x is
the angular frequency, k is the wave number, which is related to
the wavelength k by kk = 2p, s and x are the time and space vari-
ables respectively. The temporal growth of the perturbations is
studied in the present work, which means k is assumed real and
x can be complex. A well-established form of the dispersion rela-
tion for the linear analysis of K–H instabilities with the assumption
of an inviscid and incompressible flow [12] was used in the recent
study [10]. The equation was then adapted to the case where both
the melt layer and the plasma stream have nearly the same or equal
finite thickness [10,11]. This case of practical interest was dictated
to finite dimensions of the computational domain, where a plasma
height significantly larger than the melt layer thickness cannot be
easily modeled.

In the present paper, we consider a more general form of the
dispersion relation with different thicknesses of the melt layer
and the plasma stream. The general dispersion relation can be
written as [16]

x¼�k
qp cothðkhpÞVpþqm cothðkhmÞVm

qp cothðkhpÞþqm cothðkhmÞ
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where the fluid subscripts m and p refer to the melt layer and the
plasma stream respectively; g is the gravity acceleration; q, V, and
h are respectively the fluid density, velocity, and the fluid layer
thickness and r is the surface tension of the liquid metal. In Eq.
(2), the first term is the phase shift of the perturbation with respect
to time. The expression under the square root is defined here as the
stability function X(k). If X(k) is positive, the perturbation de-
scribed by Eq. (1) is stable oscillating with respect to both time
and space. Otherwise, the square root is a pure imaginary number
and the amplitude of the perturbation has a diverging exponential
time-dependence (unstable). The first term of X(k) is surface
tension and gravity stabilizing forces. The second and negative term
is the inertia term, which contributes to the growth of the instabil-
ities and depends on the relative velocity.
Since liquid metal is usually 8–10 orders of magnitude denser
than plasma vapor, we have qm � qp. Besides, the plasma stream
thickness is usually large compared to the melt layer thickness
meaning that coth (khp) is always smaller than coth (khm) for the
same value of k. It is, therefore, possible to make the following
assumption for any wave number:

qp cothðkhpÞ þ qm cothðkhmÞ � qm cothðkhmÞ ð3Þ

Then Eq. (2) is simplified to

x ¼ �k Vm þ
qp tanhðkhmÞ
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By taking hm = hp, Eq. (4) becomes the expression provided in [10].
The stability function defined previously is then given by:

XðkÞ ¼ r
qm

k3 þ gk
� �

tanhðkhmÞ �
qp tanhðkhmÞ
qm tanhðkhpÞ

k2DV2 ð5Þ

In our problem, the melt layer thickness is on the order of �10 to
�400 lm, whereas the plasma stream can be considered as infi-
nitely thick. Therefore, the stability function can be simplified to:

XðkÞ ¼ r
qm

k3 þ gk
� �

�
qp

qm
k2DV2

� �
tanhðkhmÞ ð6Þ

The system becomes unstable for X(k) < 0, which provides the fol-
lowing stability criterion derived from Eq. (5)

jDV j2 > gqm

k
þ rk

� � tanhðkhpÞ
qp

ð7Þ

We now derive the critical wave number and velocity difference
using Eq. (7). At large wavelengths, Eq. (7) shows that gravity con-
trols the critical velocity and stabilizes the perturbations, and at
small wavelengths, the surface tension is the stabilizing factor. It
is worth noting, due to the large density difference between the
plasma and the liquid metal, the critical velocity difference depends
on the thickness of the plasma stream only and not on the thickness
of the melt layer. Using the assumption of infinitely thick plasma
layer, tanh (khp) ? 1, and the stability criterion of Eq. (7), simple
expressions for the critical wavelength and the critical relative
velocity are derived by finding the minimum with respect to the
wave number of the RHS of Eq. (7)

kc ¼
ffiffiffiffiffiffiffiffiffi
gqm

r

r
() kc ¼ 2p
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r

gqm

r
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Substituting kc into Eq. (7) we can get the critical velocity

DV2
c ¼

gqm
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þ rkc
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The critical wavelength is commonly known as the Taylor wave-
length. It represents the first wave to become unstable with increas-
ing relative velocity. For a relative velocity lower than the critical
one, perturbations with any wavelength are stable. For relative
velocity larger than the critical value, only wavelengths of a certain
range are unstable.

The range of unstable waves can be derived using Eq. (6). It is
delimited by the following cut-off wave numbers found by equal-
ing X(k) to zero in Eq. (6) and solving the quadratic equation

k1;2 ¼
qPDV2

2r
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4rgqm

q2
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s !
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In this range of unstable waves for which X(k) is negative, X(k)
reaches a local maximum absolute value at kM (or kM), which



Fig. 1. The number density of atoms, ions and electrons in the hydrogen plasma as a
function of the temperature for a particular plasma density 10�19 m�3.
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defines the most unstable wave. The wave number kM represents
the fastest growing perturbation for a fixed value of a relative veloc-
ity. Therefore, the local minimum of X(k) in Eq. (6) at kM provides
the maximum temporal increment coefficient defined as:

CM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�XðkMÞ

q
¼ r

qm
k3

M �
qp

qm
k2

MDV2
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tanhðkMhmÞ
q

ð11Þ

The gravity contribution is neglected because in our problem, the
most unstable wavelength is relatively short, which implies the
gravity effect is less significant. The most unstable wavelength
and the maximum increment coefficient can be used to assess
whether K–H instabilities are likely to arise for given reactor condi-
tions and material properties. Also, since this is the wave with the
fastest growth, it could be the main factor of erosion and droplets
ejection. The analytic expression for the minimum of Eq. (11) can-
not be derived for an arbitrary value of k. The resulting algebraic
equation can only be solved numerically. However, the analytical
formula can be obtained in the limiting cases of a deep and shallow
melt layer with khm� 1 and khm� 1, respectively. Differentiating
Eq. (6) with respect to the wave number, while neglecting the grav-
ity term yields the following asymptotic solutions:

khm � 1) kM ffi
3qpDV2

4r kM ffi 8pr
3qpDV2 ð12Þ

khm � 1) kM ffi
2qpDV2

3r kM ffi 3pr
qpDV2 ð13Þ

The maximum increment coefficients from Eq. (11) are then
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While the Taylor critical wave kc of Eq. (8) depends only on the
properties of the fluids, the cut-off waves k1,2 and the most unstable
wave kM are found for a fixed relative velocity DV.

The real part of wave function of the most dangerous wave-
length in the linear stage is obtained from the complex function
of Eq. (1)

nðs; xÞ ¼ R n̂ðs; xÞ
h i

¼ n0 expðCMsÞ

	 cos
2p
kM

x� Vm þ
qp

qm
tanh kMhmð ÞVp

� �
s

� �	 

ð16Þ

Controlled by the maximum increment coefficient, its amplitude
grows exponentially with respect to time. The growth of the insta-
bility amplitude is given by

UMðsÞ ¼ n0CM expðCMsÞ ð17Þ

The solution of Eq. (16) is only valid in the early growth stage of the
unstable wave and cannot explain the growth of the ligaments ob-
served in the CFD simulations [10]. However, with higher momen-
tum of the incident plasma stream due to higher plasma density
(�10�5 to �10�4 kg/m3), kM is expected to be shorter and CM signif-
icantly larger to allow a fast growth of the surface perturbation. The
capillary effect may then lead to the formation of droplets as men-
tioned in [4,5] with a radius approximated by rd ¼ kM=4.

The expression of the characteristic time needed for a droplet to
escape from the melt surface was derived in [5] from a condition
that the kinetic energy of the growing droplet equals to the energy
needed to form the droplet surface:
sKH ¼
1

CM
ln

1
CMn0

ffiffiffiffiffiffiffiffiffiffiffiffi
24r
kMqm

s" #
ð18Þ

The droplet escape is possible when sKH is lower than the character-
istic time of plasma-target interaction. Assuming this condition is
fulfilled and the target surface is covered with 1=k2

M droplet ejection
sites per unit area, the one-dimensional erosion rate of the melt
layer due to K–H instabilities can be derived as:

WKH ¼
1

sKHk2
M

4
3
pr3

d

� �
¼ pkM

48sKH
ð19Þ

The erosion rate in Eq. (19) is similar to the splashing wave model
used in [4].

The present study only considers the interaction between plas-
ma and melt layer as a pure hydrodynamic problem, therefore,
plasma is characterized using its mass density qP. However, the
electron density Ne, which is more commonly used parameter to
characterize plasma, can also be estimated and used in the results
to improve understanding. Using the Hartree–Fock–Slater model
[17,18], the ionization balance of the plasma can be calculated as
a function of plasma temperature Te. Fig. 1 shows the ionization
balance for hydrogen plasma, which is used in tokamak devices
such as TEXTOR [19]. In the same experimental conditions, the
hydrogen plasma is characterized with a temperature of �70 eV.
For hydrogen, Ne = Ni, where Ni is the ion density of the plasma.
Fig. 1 also shows, at �70 eV, the hydrogen atoms are fully stripped,
which makes the following approximation possible

Ne ¼ Ni � qPNA=MH ð20Þ

where NA is the Avogadro number and MH is the standard atomic
mass of hydrogen.

3. Results and discussions

The linear stability theory of liquid metal splashing discussed
above was applied to investigate the critical wavelength, growth
rate of K–H instabilities, and droplets ejection from the melted sur-
face of tungsten and aluminum targets.

Table 1 shows the values of the parameters of tungsten used in
the CFD simulations in [10]. A finite plasma thickness is used only
in Figs. 2 and 3. If not specified, the value of any parameter is set by
default with the value from Table 1. Using the parameters from
Table 1, the stability criterion of Eq. (7) is plotted in Fig. 2 for tung-
sten melt as a function of the wavelength for different values of
plasma stream thickness. The Taylor wavelength kc and the critical



Table 1
Typical values of parameters used in the analysis.

g (m/s2) r (N/m) DV (m/s) hp (lm) hm (lm)

9.81 2.5 105 1600 400
NA (mol�1) MH (kg/mol�1) qp (kg/m3) Ne (m�3) qm (kg/m3)
6.022 	 1023 1.008 	 10�3 10�6 6 	 1020 1.76 	 104

Fig. 3. Stability function for different fluid thicknesses.

Fig. 4. Maximum increment coefficient versus melt layer thickness for different
values of plasma density.
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relative velocity DVc are dashed for the case of an infinitely thick
plasma stream. The region of the K–H instability numerically ob-
served in the CFD simulations [10] corresponds to the maximum
velocity 105 m/s and the cut-off wavelength �2.2 mm. The thick-
ness of the plasma does not affect the stability of short waves.
The stability of long waves is independent of the wavelength and
increases as a function of the plasma stream thickness. The plateau
at large wavelengths is given by the limit of the RHS of Eq. (7) asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðqm=qpÞhp

q
. In general the stability criterion depends on the den-

sity of fluids, the surface tension, and the body force (Eqs. (6) and
(9)).

In Fig. 3, the stability function of Eq. (6) (infinitely thick plasma
stream) is plotted for different values of the melt layer thickness
(solid lines). While the range of the unstable waves remains the
same, the most unstable wave number is weakly dependent on
the melt thickness shifting slightly towards larger wave numbers.
The temporal increment of the most unstable wave increases with
melt layer thickness and reaches the maximum value given by Eq.
(11). Fig. 3 also shows the stability function of Eq. (5) considering a
finitely thick plasma stream. The values of the parameters are all
taken from Table 1. The most unstable wave has a wave number
kM = 2840 m�1, which corresponds to a wavelength of �2.2 mm.
This value is consistent with the one reported in the CFD simula-
tions [10]. The overlapping of the dashed curve with the solid curve
for a tungsten melt layer thickness of 400 lm also shows that, the
1600-lm plasma thickness used in [10] can be considered as an
infinite plasma layer with very high accuracy.

From Figs. 4–8 , the electron density of the plasma Ne is esti-
mated with Eq. (20). It is assumed that the temperature of the
hydrogen plasma under tokamak conditions is higher than �2 eV
and Ne = Ni (Fig. 1). Fig. 4 shows the maximum increment coeffi-
cient (Eq. (11)) as a function of the tungsten melt layer thickness
for different values of plasma density. The most unstable wave-
length and its temporal increment coefficient are very sensitive
to several parameters such as the plasma density, which increases
the increment coefficient and shorten the most unstable
Fig. 2. Stability criterion for differe
wavelengths and the surface tension, which increases the wave-
length and reduces the maximum increment (Eqs. (12)–(15)). The
exponent ½ of the melt layer density in Eqs. (14) and (15) shows
nt plasma stream thicknesses.



Fig. 5. Instability growth rate for different values of plasma density.

Fig. 6. Instability growth rate for aluminum and tungsten.

Fig. 7. K–H erosion rate versus melt layer thickness for aluminum and tungsten.

Fig. 8. K–H characteristic time versus melt layer thickness for aluminum and
tungsten.
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the bulk effect has a lower impact than the surface effect. For rel-
atively high plasma densities, the increment coefficient in Fig. 4
reaches the asymptotic value for a melt layer thickness lower than
100 lm. Using the average value of Eqs. (12) and (13), the most
unstable wavelength is 2.2, 0.4, 0.2, and 0.1 mm with increasing
values of the plasma density.
Fig. 5 shows the evolution of the instability growth rate (Eq.
(17)) of a 100-micron-thick melt layer, during 50 ls, given that
the duration of a typical disruption is 0.1–1 ms. The initial pertur-
bation amplitude n0 usually small compared to the fluid layer
thickness, can be originated from several sources. For example,
bubbles of �10 to �100 lm [7] collapse at the surface of the melt
layer due to intense boiling and generate surface waves with
amplitudes in the same order of magnitude. To be conservative,
the initial perturbation amplitude n0 is chosen equal to 1 lm.
According to the growth rate, a plasma stream with a velocity of
�10 km/s and a density lower than �10�5 kg/m3 is not expected
to cause K–H instabilities on a tungsten target. A more dense
plasma, however, could lead to the development of intense K–H
instabilities.

Fig. 6 shows the instability growth rate as a function of the time
for aluminum and tungsten melts. The effect of different material
properties such as surface tension and density on the instability
growth rate is illustrated. As expected, the aluminum melt layer
with lower density of 2375 kg/m3 and lower surface tension [20]
of 1 N/m becomes very unstable at a relatively low plasma density
(5 	 10�6 kg/m3) while the tungsten melt layer is relatively stable.
Besides, under the same heat load, aluminum is expected to have
greater melt layer thickness than tungsten, which contributes even
more to the growth of the K–H instabilities.

Figs. 7 and 8 show the one-dimensional erosion rate (Eq. (19))
and the characteristic time (Eq. (18)) of droplet ejection due to
K–H instabilities, respectively. Two plasma densities (10�5 kg/m3

and 10�4 kg/m3) are used for tungsten and aluminum, which pro-
vides two values using Eq. (12) and (13) of the most unstable
wavelength for each material. Using the assumption of rd = kM/4,
the sizes of tungsten droplets are respectively 6 and 60 lm. The
sizes of aluminum droplets are respectively 2 and 24 lm. Those re-
sults are consistent with the observed experimental results [6,7].
At lower plasma density, the erosion rate is negligible for tungsten
at small values of the melt layer thickness. Besides, the K–H char-
acteristic time is higher than a typical disruption duration of
0.1 ms for the whole range of melt layer thickness. The erosion rate
of aluminum is �5 times higher than tungsten. At higher density,
the erosion of aluminum is about one order of magnitude higher
than the erosion of tungsten. The erosion rate is quasi-constant
for the range of interest of the melt layer thicknesses (tens to hun-
dreds of microns). Those results do not contradict the theoretical
estimation of the erosion rate in [4,5].

With the assumption of a thick melt layer khm� 1, the linear
stability analysis provides formula identical to the ones reported



128 Y. Shi et al. / Journal of Nuclear Materials 412 (2011) 123–128
in [5] in terms of the most unstable wavelength and the temporal
increment coefficient (Eqs. (13) and (15)). However, using these
formula our estimates show that the dense hydrogen plasma with
N � 3.5 	 1022 m�3 (�5.9 	 10�5 kg/m3) and streaming with Vp

�105 m/s is needed to generate waves on the melt surface with
the most unstable wavelength kM � 40 lm in order to produce
the droplets with the radius of kM=4 � 10 lm. The required density
is even larger for the plasma flowing with the lower speed <105 m/
s (Eq. (13)). The parameters of the plasma in the QSPA-T are
estimated [5] to be 104 < Vp < 105 m/s and N < 1022 m�3. For ITER,
the density of the impacting plasma is even lower 1019 < N
< 1020 m�3. In [5], it is assumed that the thickness of a melt layer
is larger than the wavelength of the unstable waves and wave
breaking does not occur for khm� 1. Such a cut-off condition is
not foreseen in our erosion wave model, where the continuous ero-
sion is governed by the erosion rate (Eq. (19)), that is continuously
updated according to the characteristic time of droplet ejection.
For thinner melt layer, the characteristic time (Fig. 6) increases
due to the decrease of the melt layer thickness and thus the erosion
rate (Fig. 7) decreases. Therefore, for khm� 1, the erosion due to
K–H instabilities still occurs in our model but with a lower velocity.

4. Conclusion

A detailed and comprehensive linear analysis of the K–H insta-
bilities, assuming inviscid and incompressible flows, has been used
to study for the first time the macroscopic erosion and splashing of
melt layers during intense plasma energy deposition on PFC in
tokamak devices. The study shows when the relative velocity be-
tween the plasma stream and the liquid layer is below a critical va-
lue, which does not depend on the thickness of the melt layer due
to the large density difference, no perturbation wave can develop
such as K–H instabilities at the interface. However, when the rela-
tive velocity is high enough, a range of wavelengths are unstable,
among which the most dangerous wave is the fastest one to grow
and eventually causes melt layer splashing and erosion. The wave-
length of this specific wave depends weakly on the melt layer
thickness, whereas the temporal increment of the wave is an
increasing function of the thickness at relatively low values and be-
comes constant at larger values. The growth rate of the most unsta-
ble wave is strongly dependent on plasma density and material
properties such as surface tension and density. At relatively low
plasma density (10�5 kg/m3), the growth rate of K–H instabilities
in tungsten melt layer is negligible and starts being significant in
aluminum melt. At higher plasma densities, the capillary effect
can induce droplet formation at the surface. The characteristic time
of droplets ejection as well as the erosion rate of the melt layer are
computed as functions of the instability growth rate. This estima-
tion is justified for short unstable waves with fast growing rate, i.e.,
for high values of plasma density and low values of surface tension
and density of the melt layer.

In the present analysis, the viscous effect is not considered. Vis-
cosity is expected to have a consequent stabilizing effect on the on-
set of unstable waves. Furthermore, normal components of forces
other than gravity could play the role of stabilizing factor. For
example, strong magnetic fields of �5–10 T are present in tokamak
devices. When the magnetic field lines, almost parallel to the melt
layer surface (�5�), are in the same direction as the plasma flow, a
magnetic field induced surface tension is added to the stabilizing
factors. However, when the magnetic field lines are transverse to
the flow direction, the stability of perturbations is not affected.
In the presence of an electric current coupled with the magnetic
field, Lorentz force, acting as a body force, could also play an
important role in the stability or instability of the perturbations.
This work is currently underway.
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