
Drinking Water Quality Impacts of Cured in Place Pipe (CIPP) Lining

Samuel Spears

Div. Environmental and Ecological Engineering

Purdue University

Foundation

Funded by:

June 2024

Research Made Possible with Contributions By:

Pritee Pahari, M.S. Sydney Butler Shantanu Sonawane John A. Howarter, Ph. D. Caitlin R. Proctor, Ph. D. Jeffery P. Youngblood, Ph.D. Andrew J. Whelton, Ph.D. & others from Purdue University

With Support From:

Warm Springs Foundation U.S. National Science Foundation CBET-1624183 and CBET-2129166 U.S. Environmental Protection Agency Purdue University Lyles School of Civil Engineering

What?

Trenchless pipe rehabilitation

Why?

Less disruption, Efficient, & Lower cost

Guidelines?

AWWA Mfg. Std. C623-21 AWWA Manual M28

How?

Insert a resin soaked felt liner into the pipe and cure using steam, heat, UV, or ambient conditions

Applications?

Typically used in sewer and stormwater pipes. **Epoxy resin-based CIPP** mostly used for **potable water.**

Market Overview:

\$2.8 B market globally; 5% CAGR; Est. 2028 forecast to be \$3.8 B Epoxy resin < 1% of the CIPP projects</p>

A Utility Case Study: Epoxy CIPP for Water Mains

Followed AWWA standard C651

Flushed water was milky white foamy

Laboratory testing found chemicals present like acetone, 2-butanone, styrene, and more

Four epoxy CIPPs installed; CAN/ANSI/NSF/ NSF-61 certified

Many flushing's required

The wastewater utility would not accept the flushed water

Most Common Epoxy Resin	Two Ways Polymeriza		epoxy resin HO epoxy resin			
$\begin{bmatrix} 0 & BPA & Depicted BPA & Depicte$	linear chain of sam	e monomer	epoxy resin			
(II) $+ \text{NaOH} = - \text{NaCI} + \text{NaOH} = - \text{H}_2O$ $\xrightarrow{\text{CH}_3} = - \text{H}_2O$ $\xrightarrow{\text{CH}_3} = - \text{CH}_3$ BADGE (MONOMER)	2. Forming co-po hardeners (Cro Phenol, triethylene isophorone diamine	osslink) tetramine,	Polymerization with a diamine			
Chemicals expected in the 1. BPA (=SVOC)	epoxy resins:	Select Drinking Water Regulations:				
 Epichlorohydrin (=SVOC) BADGE (=SVOC) VOCs? 		Minnesota BPA limit: 20 ppb /100 ppb (chronic/short term)				
		EPA Epichlorohydrin: MCLG =0; MCL =TT				
Manufacturer's 2023 Claim Direct use possible after manuf		& More				

Our review of SDSs for epoxy CIPP raw materials revealed a diversity of chemicals reported

Lictod Ingradiant	CASRN Products reported on SDS do						cuments, % unless shown otherwise				
Listed Ingredient	CASKIN	A	В	С	D	E	F	G	Н	I	J
Polyamides	63428-83-1				>80						
Bisphenol A reaction product	25085-99-8			<85							
Epoxy resin	25068-38-6						50-80	40-70	50-80	10-30	10-30
4,4'-Isopropylidenediphenol-epichlorohydrin copolymers	25068-38-6	55-90									
Fatty acids, C18-Unsatd., dimers, reaction products with polyethylenepolyamines	68410-23-1		30-65								
Teta, reaction products with phenol and formaldehyde	32610-77-8					40-70					
Triethylenetetramine	112-24-3		30-50			15-40					
Phenol	108-95-2					15-40					
Benzyl alcohol	100-51-6				<15						
Polyglycol diglycidyl ether modifier	74398-71-3							5-15			
Polyfunctional glycidyl ether modifier	26142-30-3									5-15	5-10
Polyglycol diglycidyl ether	26142-30-3						5-15		5-15		
2-Ethyl hexyl glycidyl ether (EHGE)	2461-15-6			>10							
Xylene	1330-20-7									<7	7-13
Isophoronediamine	2855-13-2				>5						
Epichlorohydrin	106-89-8	3-4ppm									
Carbon black	1333-86-4						<2		<2		
Acetone	67-64-1									<1	
Petroleum distillates	64742-47-8			<1							
Adhesion promoter	Not reported									<1	

Our study goal: To better understand the chemicals used and released from drinking water CIPPs

<u>Questions:</u>

- 1. What chemicals are found in and leach out from new epoxy CIPPs?
- 2. How do manufacturing conditions impact CIPP drinking water impacts?
- 3. Do "VOC-free" epoxy resin and hardeners contain VOCs?

Material Type	Resin: Hardener Ratio	Rec. Cure Time	Rec. Cure Temp.	Total List of SDS Ingredients			
Resin	-	-	-	75-80% Bisphenol-A Epichlorohydrin Epoxy Resin 10-20% [[(2-ethylhexyl)oxy]methyl]oxirane 1-5% Silicon dioxide, chemically prepared			
Hardener 1 (Normal Drying)	4:1	3.5 hours (3-4)	130°F	>80% Polyamides <15% Benzyl alcohol >5% Isophorone diamine			
Hardener 2 (Quick Drying)	2:1	2 hours	130°F	55-65% reaction products with phenol and formaldehyde 15-20% Triethylenetetramine 15-20% Phenol			

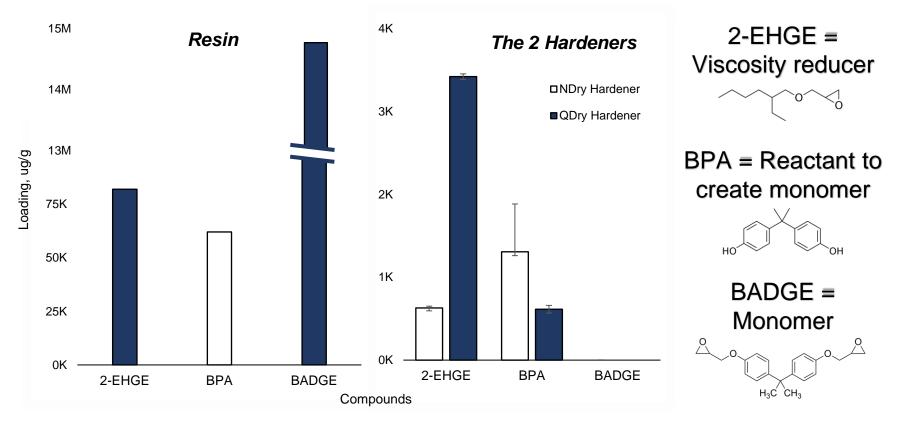
We created CIPP composites under 3 conditions:

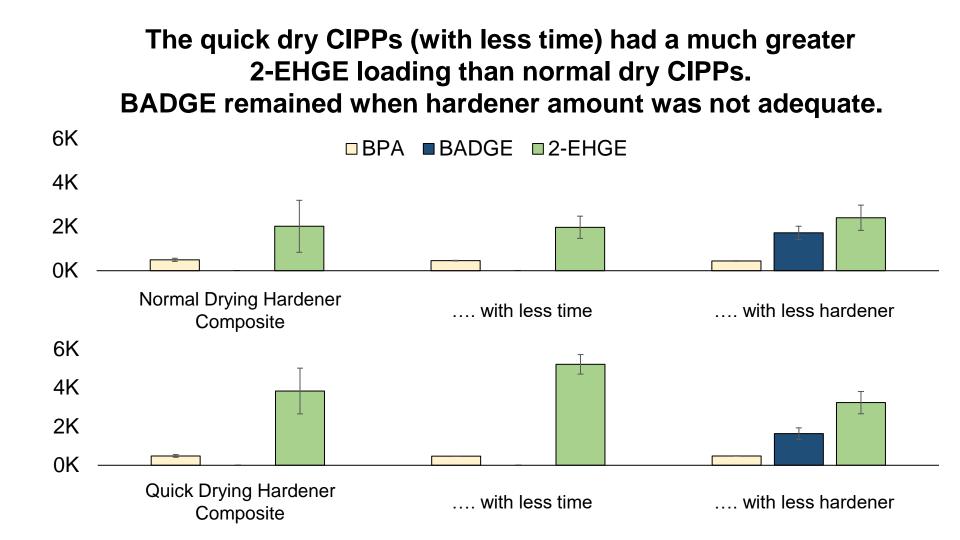
Standard Mfg 10% Less Time 5% Less Hardener

CIPPs were exposed to drinking water for 24 hr → 24 hr → 24 hr → 72 hr

The CIPPs and drinking water were characterized using a variety of methods

GCMS (Gas Chromatography Mass Spectrometry)


1

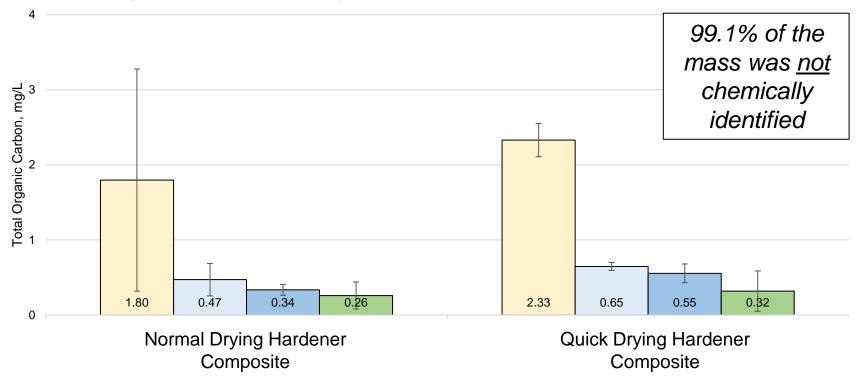


3 TGA (Thermogravimetric Analysis) for CIPP characterization

4 PID (Photoionization Detector) for air monitoring

As expected BADGE was present at a high loading in the resin, but BPA and 2-EHGE were present too

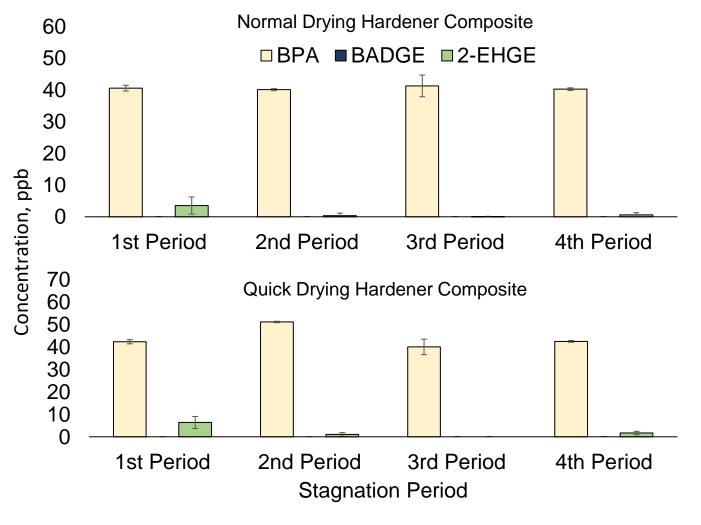
Several tentatively identified compounds (TICs) were found in the raw materials and CIPPs. Fewer TICs were found in the CIPPs

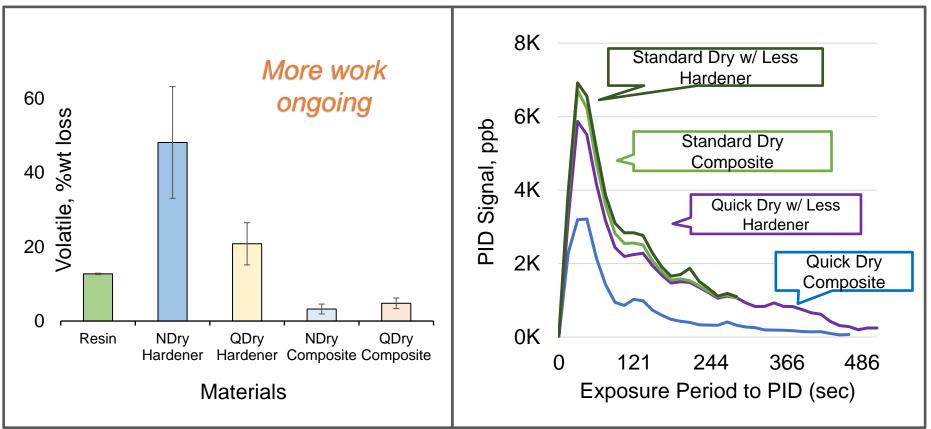

Area .		Uncured Materials	Epoxy CIPP Composites			
	Resin	Standard Dry Hardener	Quick Dry Hardener	Standard Dry Hardener	Quick Dry Hardener	
>100K	14	33	27	9	17	
>300K	8	24	19	3	9	
>500K	6	16	18	2	5	
>1M	3	11	15	2	5	
>5M	2	7	10	1	2	
>10M	2	3	6	1	1	

TICs include, butHeptanePentadecane1-Butanol2 Ethyl hexanolare not limited to:Phenolo-Cresolp-Cresol& More

The CIPPs released a notable amount of carbonaceous material into drinking water

Background TOC level was 0.09 mg/L Typical drinking water TOC level: 2-4 mg/L


□1st 24 hour □2nd 24 hour □3rd 24 hour □Next 96 hour


CIPPs leached BPA and 2-EHGE into drinking water during stagnation

No apparent aqueous concentration differences found across CIPPs

BADGE was not detected

TGA and PID data indicated that CIPPs contained VOCs and VOCs were released into air

When leaching results were scaled, smaller diameter CIPPs were found to exceed drinking water exposure limits, ppb

Compound a	Concentration for the 1 st (3 rd) and 4 th Stagnation Period and Water Main Pipe Diameter, Inches					Drinking Water Health-Based Exposure Limits				
СІРР Тур	36	24	12	6	4	WHO	EU	Minnesota (Long-term, Short-term)	NSFI 61 (SPAC/TAC/STEL)	
BPA	NDry 3 -3- 3 5 -5- 5 10 -10- 10 20 -20- 20 30 -30- 30	1	2.5	20/ 100	10/ 100/ 200					
	QDry	3 -3- 3	5 -5- 5	10 -10- 10	21 -20- 21	31 -29- 31		2.0	20/ 100	10/ 100/ 200
2-EHGE	NDry	0 -0- 0	0 -0- 0	1 -0- 0	2 -0- 0	3 -0- 0			-/-	0.3/ 3/ 10
	QDry	1 -0- 0	1 -0- 0	2 -0- 0	3 -0- 1	5 -0- 1	-	-		
тос	NDry	0 -0- 0	0 -0- 0	0 -0- 0	1 -0- 0	1 -0- 0			-	
	QDry	1 -0- 0	1 -0- 0	2 -0- 0	3 -0- 0	5 -0- 0	-	-		-

Observations and Conclusions

The SDSs did not list all chemicals in the resin and hardeners

- Resin contained 2-EHGE (VOC, not listed), BPA (SVOC, not listed), and BADGE (SVOC)
- There were many TICs in the raw materials: Resin (14), Standard Hardener (27), Quick Dry Hardener (33)

New CIPPs contained a variety of extractable organic compounds, and their loading was sometimes influenced by manufacturing conditions

- □ 2-EHGE, BPA, and TICs were extracted from the CIPPs
- Less curing time and less hardener conditions prompted different residuals in the new CIPPs

Chemicals in the CIPPs leached into drinking water

- **2**-EHGE and BPA were leached by both CIPP types, but concentrations were not different.
- ☐ TOC monitoring had limited usefulness. >99.1% of carbon mass was not identified

Implications and Recommendations

-VOCs- were in the CIPPs and were released into air

- □ Resin is marketed as 100% solids but *does contain* VOCs
- □ Some consultants advertised epoxy CIPP as VOC free to utilities (Whelton experience)
- □ Epoxy CIPPs are created with VOCs, that remain in the CIPPs and can leach out

Info available underscores the need for careful consideration

- Detential impact of CIPPs on drinking water quality increases with smaller pipe diameters
- □ Repeated stagnation and flushing cycles can remove leachable chemicals
- Unclear how the diversity of resins, hardeners, and manufacturing differences influence SHORT- and LONG-term drinking water quality performance (microbial, DBPs, etc.)
- □ Standard USEPA methods will not detect many of the CIPP leached chemicals
- □ Testing recommended for all new CIPP installations. Formal studies recommended too.
- □ The toxicity of waste from steam epoxy CIPPs has gone unstudied.

Thank you

Samuel Spears spears22@purdue.edu Andrew Whelton, PhD awhelton@purdue.edu

www.PlumbingSafety.org www.CIPPSafety.org Special thanks to:

Warm Springs Foundation

U.S. National Science Foundation

U.S. Environmental Protection Agency

