Objective:
- To enable accurate occupancy sensing/tracking and automatic 3-D reconstruction of spaces using a new, low-cost fisheye stereo camera system

Problem:
- Occupant presence and position are required for localized advanced control options
- Space reconstruction and occupant positioning through computer vision techniques can expedite calibration of parameters and minimize commissioning needs

Expected Results:
- A new low-cost, calibrated, programmable stereo-fisheye camera system
- Continuous automated 3D geometry retrieval and real-time detection of occupant presence, position and posture –direct inputs to building models and control logics
- Reduced cost for controls and commissioning
- Extensions to occupant behavior learning through vision-based, non-invasive techniques

Approach:
- Using a small stereo camera on the ceiling, retrieve 3-D space geometry as well as occupant tracking
- Pixel matching, edge/line/depth estimation; machine-learning and pattern recognition techniques can be embedded in calibrated, programmable camera
- Real-time communication through Raspberry Pi to BMS – occupant presence, posture, behavior –controls

Schedule
1. Development, calibration and testbed installation of fisheye-stereo camera system: **Jan-Mar**
2. 3-D geometry retrieval of testbed office: **Mar-Jun**
3. Occupant sensing (presence & position) and implementation of control algorithms in testbed office: **Jun-Nov**
4. Extensions to occupant behavior and demonstration in open plan offices (LL): **Oct-Dec**

PIs: Thanos Tzempelikos
Michael Kim
Automated 3-D Space Reconstruction and Occupancy Detection (Presence and Position) to Enable Efficient Building Controls Using a Low-Cost Stereo Camera System

Overview of approach

- **Pi stereo camera system**
- **Object detection-segmentation**

Pi stereo camera system

- Advanced control implementation based on the building model

Vision-based occupant learning and control

- Continuous automated 3D-geometry retrieval
- Occupant sensing (positioning and posture tracking)

Human posture detection & tracking

PIs: Thanos Tzempelikos, Michael Kim

Overview of approach

- Automated stereo-vision sensor installation
- OpenCV
- TensorFlow
 - Automated Computer Vision & Deep Learning Approaches
- Python
- MATLAB

Object detection-segmentation

- Triangulation
 - Main objects in 3-D cartesian coordinates

Vision-based occupant learning and control

- Latent human variables
 - Comfort
 - Preference
 - Distraction
 - Productivity

Human environment (thermostatic quality)

Overhead stereo-camera