Objective:
- Develop long-lasting, low-cost VOC sensors for the high-fidelity detection of xylene (i.e. an aromatic hydrocarbon), ethanol (i.e. an alcohol), and formaldehyde (i.e. an aldehyde).

Problem
- There are few cost-effective commercial VOC sensors capable of continuously monitoring indoor environments despite the negative impact of VOCs on public health.

Expected Results:
- A field-ready prototype sensing system capable of integrating with a residential or commercial IoT testbed.
- Clear, benchmarked sensor performance metrics.

Approach and Research Tasks:
1. Design and synthesize carbon nanotube-polymer composites that respond to the VOCs of interest.
2. Develop and fabricate VOC-sensitive organic field effect transistors and resonant mass sensors.
3. Integrate the OFET and mass sensor platforms into a single device, and evaluate both selectivity and sensitivity.
4. Benchmark pertinent performance metrics against other VOC sensor technologies.

Schedule

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PIs: Jeff Rhoads, Bryan Boudouris, George Chiu, and Jim Braun
Long-Lasting, Low-Cost Volatile Organic Compound (VOC) Sensors for Interior Monitoring

PIs: Rhoads, Boudouris, Chiu, and Braun

Technical Strategy:
• Shamelessly leverage an ~$1.7M investment by ARPA-E and Purdue University to achieve a research pace and scale of development not traditionally possible within the confines of a CHPB project.

Technology to Market Strategy:
• Focus on “quick wins” to develop a technology that can progress to market in <36 months.