Objective:
- Extend the novel cycle configurations available
- Integrate variable speed equipment with experimental validations
- Add calibration and optimization routines and simulate seasonal performance

Problem
Enhance the flexibility of the code to allow the selection of components within a user-defined cycle

Expected Results / Impact:
- Extensive validation of all the vapor-compression cycles implemented
- Possibility of calibrating a detailed cycle model with experimental results provided by the user
- Accurately predict the performance during off-design
- Optimize units by utilizing variable-speed equipment
- Evaluate the impact of new working fluids

Approach:
- Modify vapor-injected cycle to handle two-phase conditions at the economized compressor inlet and multiple injection lines
- Add oil-flooded compression cycle for cold climate HPs
- Improve charge-inventory solution scheme with calibration procedures
- Add variable-speed models for the compressor and the fans

Schedule

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Startup</td>
<td>1</td>
</tr>
<tr>
<td>Development of Cycle and Component Models</td>
<td>2-4</td>
</tr>
<tr>
<td>System Model Validations</td>
<td>5-6</td>
</tr>
<tr>
<td>Calibration and Optimization Routines</td>
<td>7-9</td>
</tr>
<tr>
<td>Final report</td>
<td>10-12</td>
</tr>
</tbody>
</table>

A General Open-Source Platform for Evaluating Advanced Vapor Compression Air Conditioners and Heat Pumps (Y2)

Cycle modeling

Equipment modeling

GUI development:
- Vapor-Injected compression system with economizer (left) and with flash tank (right)