HVAC Equipment Automated Diagnostics

PI: James E Braun
Graduate Research Assistant: Andrew Hjortland
Sponsor: DOE Energy Efficient Buildings Hub

- 60% Commercial building floor space using RTUs
- 160 Trillion BTUs Annual cooling energy consumption
- 46% Not properly charged
- 64% Economizers need service

Large potential savings
Virtual Sensors

Some measurements are difficult or expensive: air flow rate, refrigerant flow rate, compressor power. Some are impossible: system charge.

Use low cost sensors with mathematical models instead to estimate these quantities.

- More information for FDD at lower cost
- Shorter payback period

Fault Detection

Combine engineering knowledge with statistical classification techniques to make robust tools.

Compare models of normal behavior with actual observations.

When our confidence exceeds a threshold, declare a fault.

Impact Evaluation

Methods to evaluate a faults’ impact on system performance are being developed, including:

- Capacity
- SHR
- Energy Consumption
- Efficiency
- Runtime
- Comfort
- Equipment Life
- Service Cost

Fault Diagnosis

Apply empirically validated gray-box models to isolate faults.

Focus on embedded diagnostics for widely used types of equipment. Laboratory tests and training offers several advantages:

- Experimentally trained models are more robust than field-trained models
- Smaller engineering cost because of narrower focus
Virtual Sensors

Experimentally validated virtual sensors

Accurate results even when other faults are present

Fault Detection

Developed AFDD software implemented in field installed equipment and have identified faults.

Impact Evaluation

Energy impact estimation has been applied to actual field installed equipment.

Fault Diagnosis

AFDD tool demonstrated to have accurate diagnosis performance for impactful faults.