Research Interests		
Computational EMSuperconducting Qubits	 Quantum Engineering Quantum Information	 Open Quantum Systems AMO
Current Academic Status an	d Previous Education	
Purdue University - West Lafa	Aug. 2022 – Current	
Electrical and Computer Engineering-PhD		West Lafayette, USA
• Research Assistant under Dr. Th	omas Edgar Roth	
Lahore University of Management Sciences		Aug. 2017 – May 2021
Bachelor of Science in Electrical Engineering with Physics Minor		Lahore, Pakistan
Relevant Research Projects		
Semi-classical modeling of multi-qubit transmon systems		June 2024 – Current
Research Assistant to Dr. Thomas Edg	ar Roth	
ő	model the interaction of multiple qubits w ite Element Time Domain Methods (FET	ith a resonator in the dispersive Regime. D) to solve the coupled Partial Differential

Equations. Project is in Progress.

Field-Based Formalism for Calculating Multi-Qubit Exchange Coupling Rates May 2023 – May 2024 Research Assistant to Dr. Thomas Edgar Roth

• Derived the Hamiltonian for a multi-qubit system coupled via an electromagnetic resonator in the dispersive regime through the Schrieffer Wolff transform. Related this to the field-based formalism to derive a succinct expression relating the qubit exchange rate to the impedance response of the system. **Project is under review.**

Quantum Zeno and anti-Zeno effects in the strong coupling regime

Research Assistant to Dr.Adam Zaman Chaudhry

• Analytically derived and simulated the decay rate and modified decay rate for an arbitrarily initialized spin system in the strongly interacting paradigmatic Spin-Boson Model. Published.

Publications

-1. T. . . .

р

- 1. G. Khan, H. Soomro, M. U. Baig, I. Javed, and A. Z. Chaudhry, "A generalized framework for the quantum zeno and anti-zeno effects in the strong coupling regime," Scientific Reports, vol. 12, no. 1, p. 18652, 2022
- 2. G. Khan and A. Z. Chaudhry, "Detection of weak magnetic fields using nitrogen-vacancy centers with maximum confidence," arXiv preprint arXiv:2112.04856, 2021

Relevant Course Projects

Implementation of Shor's Algorithm | PHY 414: Quantum Computation and Information

• Implemented the Shor's Algorithm for a 4-bit prime in the Qisket space.

Gradient Descent to generate desired entangled superposition state |QOSF task(Link)|

• Used gradient descent to deduce the parameters for a quantum circuit to give an entangled superposition state with the desired measurement probabilities.

Cross View Image Retrieval | CS 437: Deep Learning(Link)

• The course involved the application of several Deep learning structures like RNN, CNNS, GANs etc which culminated in developing an image retrieval algorithm from the Google Street View Dataset.

Technical Skills

Languages: Python, C++, C, *IAT_EX*, MATLAB, Qiskit, Verilog Softwares: Proteus Design Suite, PTC Creo, MikroC, LABVIEW, Mathematica, Adobe Suite, LTspice, COMSOL Hardware: PCB Design/Fabrication, Vector Network Analyzer, Arduino, PIC, Rasberry PI, FPGA, Software Defined Radios

Spring 2020

Spring 2021

Fall 2020

Sep 2021 – Nov 2022

Ghazi Khan

🤳 +1 765 746 9067 🔽 khang@purdue.edu 🔅 sites.google.com/view/ghazikhan/ 👩 github.com/ghazi221b