Chapters 1 - 5

- Chapter 1:
- Photogrammetry: Definition, introduction, and applications
- Chapters $2-4$:
- Electro-magnetic radiation
- Optics
- Film development and digital cameras
- Chapter 5:
- Vertical imagery: Definitions, image scale, relief displacement, and image to ground coordinate transformation

CE59700: Chapter 6

Image Coordinate Measurements

Overview

- Image coordinate measurements in analog, analytical, and digital environments
- Comparators: mono and stereo-comparators
- Automatic comparators
- Comparator-to-image coordinate transformation
- Reduction/refinement of image coordinate measurements:
- Radial and de-centering lens distortions
- Atmospheric refraction
- Earth curvature

Measurement \& Reduction of Image Coord.

- Objective of photogrammetry:
- Derive ground coordinates of object points from measured image coordinates
- Thus, photogrammetric processing starts with the measurement of image coordinates.
- We are going to discuss how to perform this task in:
- Analog or analytical environment (i.e., using analog images)
- Digital environment (i.e., using digital images)

Different Generations of Photogrammetry

Different Generations of Photogrammetry

- Analog photogrammetry:
- Analog imagery + stereo-viewing controlled by optical and mechanical devices
- Analog output
- Analytical photogrammetry:
- Analog imagery + stereo-viewing controlled by computers
- Digital output
- Digital photogrammetry:
- Digital imagery + stereo-viewing controlled by computers
- Digital output
- Automation capabilities (automatic matching and DEM generation)

Analog Photogrammetry

CE 59700: Digital Photogrammetric Systems
Ayman F. Habib

Analog Photogrammetry

Wild A8 Analog Plotter

http://www.wild-heerbrugg.com/photogrammetry.htm

Analytical Photogrammetry

BC3 Analytical Plotter
http://mundogeo.com/wp-content/uploads/2000/portugues/infogeo/04/pag48b.jpg

Analytical Photogrammetry

Ziess P3 Analytical Plotter
http://www.cardinalsystems.net/help5/digconfig_image056.jpg

Analytical Photogrammetry

Stereo-viewing \& Stages
http://www.cardinalsystems.net/help5/digconfig_image056.jpg

Digital Photogrammetry

ImageStation 2002 Digital Photogrammetric Workstation (DPW)

CE 59700: Digital Photogrammetric Systems

Digital Photogrammetry

ImagStation SSK: Stereo Softcopy Kit

http://www.solgrafperu.com/images/productos/imagestation_ssk.jpg

Digital Photogrammetry

DJI Phantom 2 Vision

Digital Photogrammetry

Ronald McDonald House - Calgary

Digital Photogrammetry

CE 59700: Digital Photogrammetric Systems
16

Digital Photogrammetry

Digital Photogrammetry

Dense-Matching Point Cloud

Digital Photogrammetry

Derived Point Cloud

Digital Photogrammetry

Derived Point Cloud

Digital Photogrammetry

Image Coordinate Measurements

y) Image Coordinate Measurements

Comparator coordinates ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$) \rightarrow Image coordinates (x, y)

Image Coordinate Measurements

- We cannot directly measure the image coordinates of features of interest.
- We use machines (known as comparators) to measure the coordinates relative to the machine coordinate system.
- Output: Machine/comparator coordinates
- The machine/comparator coordinates are reduced to image coordinates (i.e., relative to the image coordinate system).

Coordinate Measurements in Analog Images

Comparators

Analog Cameras

http://cmapspublic.ihmc.us/rid=1235786230204_282179246_24695/Photogramm\�\�trie\ -
\%20Cam\%C3\%A9ras\%20a\%C3\%A9riennes\%20analogiques.jpg

Analog Cameras

http://www.kasurveys.com/Sensors.html

Comparators

- Comparators are highly accurate machines for measuring the xy-coordinates of selected points in the image plane.
- Comparators can be classified into:
- Mono-comparators: coordinates are measured in one image at a time.
- Stereo-comparators: coordinates are measured in a stereo-pair simultaneously.

Stereo-Imaging

Stereo-Imaging

No y-parallax \rightarrow Normal Case Imagery

Stereo-Comparators

Stereo-Comparators

- Two stages on top of which the two images of a stereopair are mounted.
- If no y-parallax exists, points can be selected and measured stereoscopically (i.e., in 3-D).
- Condition for stereoscopic viewing:
$-\mathrm{d} \omega$ and $\mathrm{d} \phi$ between the two images are small.
- There is no vertical/y parallax.

Stereo-Comparators

- Measurements:
- $\left(\mathrm{x}^{`}, \mathrm{y}_{1}{ }_{1}\right)$ stage coordinates in the left image
- $\left(p_{x}, p_{y}\right)$ offsets (parallax) to the conjugate point in the right image
- $\mathrm{x}_{\mathrm{r}}{ }^{\prime}=\mathrm{p}_{\mathrm{x}}+\mathrm{x}_{1}$
- $y_{r}^{\prime}=p_{y}+y_{1}^{\prime}$
- Advantage: Points are selected stereoscopically \rightarrow Higher accuracy \rightarrow Less mis-matches.
- Disadvantage: Stereoscopic viewing is possible only if the rotation angles (ω, ϕ) are small.

Mono-Comparators

Measurement of Stage Movement

Measurement of Stage Movement

Measurement of Stage Movement

sensor

CE 59700: Digital Photogrammetric Systems

Measurement of Stage Movement

Measurement of Stage Movement

- The number of maxima and minima in the current from the photo diode is proportional to the stage displacement.
- Using linear interpolation, we can measure displacements as small as $1 \mu \mathrm{~m}$.

Abbe's Rule

- The accuracy of the comparator depends on the spacing between the distance to be measured and the measuring scale.
- Abbe's rule states that the distance to be measured and the measuring scale should be along a straight line (to achieve the highest accuracy possible).

Abbe's Rule

Comparators

- Stereo Comparators:
+ Points are selected in 3-D.
+ More accurate
+ Less mis-matches
- More expensives
- Larger in size
- Cannot be used for convergent imagery (Aerial imagery only)
- Mono Comparators:
- Points are selected in 2-D.
- Less accurate
- More mis-matches
+ Less expensive
+ Smaller in size
+ Can be used with any kind of imagery (Aerial \& close range)

Point Transfer Devices

- Point transfer devices physically mark the points on the emulsion using a needle or a small drill.
- Points are viewed stereoscopically.
- Point transfer devices + mono-comparators will yield an accuracy which is similar to that obtained from stereocomparators.

Point Transfer Devices

http://www.ebay.ca/itm/POINT-TRANSFER-DEVICE-HEERBRUGG-WILD-PUG-4-PUG4-Avioimage-Mapping-Photogrammetry-/150781495683

Point Transfer Devices

Automatic Comparators

- Stage (comparator) coordinates are measured automatically.
- The stage is moved in the xy-directions by means of high precision servo-motors.
- For this type of comparators, we use retro-reflective targets:
- When they are illuminated at the moment of exposure, they produce high contrast to their background.

Retro-reflective Targets

Retro-reflective Targets

http://archives.sensorsmag.com/articles/0600/71/main.shtml

Automatic Comparators

Automatic Comparators

- Approximate locations of the targets in the image are available.
- The stage is driven to the approximate locations of the targets.
- This part of the image is digitized by a CCD camera.
- Through a simple thresholding and centroid extraction algorithm, one can determine the stage coordinates of the target under consideration.

Centroid Extraction

Centroid Extraction

$$
\begin{aligned}
& x_{c}=\frac{\sum\left(g_{i}-g_{t h}\right) x_{i}}{\sum\left(g_{i}-g_{t h}\right)} \\
& y_{c}=\frac{\sum\left(g_{i}-g_{t h}\right) y_{i}}{\sum\left(g_{i}-g_{t h}\right)}
\end{aligned}
$$

- The summation is carried over all the pixels that belong to the blob.

Coordinate Measurements in Digital Images

Pixel Coordinates

Digital Images

- Digital images can be obtained through either:
- Scanning analog images (Scanners), or
- Directly using digital cameras.

Photogrammetric Scanner
http://cmapspublic.ihmc.us/rid=1J5T5YMZV-15ZNLP5-1JMD/Balayeur\ optique.bmp

Digital Cameras

- A digital camera captures an image through a sensor called CCD (Charge Coupled Devices) or CMOS (Complementary Metal-Oxide Semiconductor).
- CCD/CMOS is a chip consisting of an array of light sensitive photo-cells.
- This sensor has light sensing dots called pixels.
- The actual resolution of a camera is controlled by the total number and size of pixels that are located on the CCD/CMOS sensor.
- The more pixels a digital camera has on its sensor, the larger the pictures you can take.

Digital Mapping Camera ($\mathrm{DMC}^{\mathrm{TM}}$)

- Digital frame camera developed by Z/I Imaging
- It is a turnkey digital camera designed to support aerial photogrammetric missions
- Resolution: 14kx8k

Digital Mapping Camera: Z/I DMC IIe 250

Source: Z/I Imaging
Z/I DMC IIe 250 (16,768x14,016 image format)

- Single PAN CCD and four multispectral cameras

Digital Images

Pixel Coordinates are analogous to comparator coordinates.

Comparator to Image Coordinate Transformation

Deriving Image Coordinates

- Comparators measure the coordinates of selected points relative to the comparator coordinate system ($\mathrm{x}^{\prime}, \mathrm{y}^{`}$) comparator/machine coordinates.
- We are interested in the coordinates of these points w.r.t. the image coordinate system (x, y).
- Thus, we need to reduce the comparator coordinates into image coordinates.

Comparator to Image Coordinate Transformation

Images Acquired by Analog Cameras

Image Coordinate System

Fiducial Marks

- Fiducial marks are small targets on the body of analog metric cameras.
- Their positions relative to the camera body are known through a calibration procedure.
- They define the image coordinate system.
- In that system, the position of the perspective centre is known.
- Form, number, and distribution of Fiducial marks depend on the camera manufacturer.

Sample Fiducial Marks

(a)

(c)

(b)

(d)

Comparator to Image Coord. Transformation

- Alternatives:
- Two dimensional similarity transformation
- Four parameters
- Affine transformation
- Six parameters
- Bilinear transformation
- Eight parameters
- Projective transformation
- Eight parameters

2-D Similarity Transformation

2-D Similarity Transformation

2-D Similarity Transformation

$$
\begin{array}{ll}
{\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x_{T} \\
y_{T}
\end{array}\right]} & +S\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \\
\text { Where: } \\
S & \text { is a scale factor } \\
x_{T} \& y_{T} & \text { are shifts } \\
\alpha & \text { is a rotation angle } \\
x \& y & \text { are image coordinates } \\
x^{\prime} \& y^{\prime} & \text { are comparator coordinates }
\end{array}
$$

2-D Similarity Transformation

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x_{T} \\
y_{T}
\end{array}\right]+\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]} \\
& \text { Where }: \\
& a=S \cos \alpha \\
& b=S \sin \alpha
\end{aligned}
$$

Scale Differences along the x and y axes

Scale Differences along the x and y axes

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x_{T} \\
y_{T}
\end{array}\right]+\left[\begin{array}{cc}
S_{x} \cos \alpha & -S_{y} \sin \alpha \\
S_{x} \sin \alpha & S_{y} \cos \alpha
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

Where :
S_{x} is the scale factor along the x-axis
S_{y} is the scale factor along the y-axis

Non-Orthogonality of Comparator Axes

Non-Orthogonality of Comparator Axes

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x_{T} \\
y_{T}
\end{array}\right]+\left[\begin{array}{cc}
S_{x} \cos (\alpha+\delta \alpha) & -S_{y} \sin \alpha \\
S_{x} \sin (\alpha+\delta \alpha) & S_{y} \cos \alpha
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]
$$

Where:
S_{x} is the scale factor along the x-axis
S_{y} is the scale factor along the y-axis
$\delta \alpha$ is the non-orthogonality angle

Affine Transformation

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a_{o} \\
b_{o}
\end{array}\right]+\left[\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]} \\
& \text { Where : } \\
& a_{o}=x_{T} \\
& a_{1}=S_{x} \cos (\alpha+\delta \alpha) \\
& a_{2}=-S_{y} \sin \alpha \\
& b_{o}=y_{T} \\
& b_{1}=S_{x} \sin (\alpha+\delta \alpha) \\
& b_{2}=S_{y} \cos \alpha
\end{aligned}
$$

Bilinear Transformation

- It can compensate for distortions introduced during film development (e.g., film shrinkage).
- $x=a_{0}+a_{1} x^{\prime}+a_{2} y^{`}+a_{3} x^{\prime} y^{\prime}$
- $y=b_{0}+b_{1} x^{`}+b_{2} y^{`}+b_{3} x^{\prime} y^{`}$
- Number of involved parameters: Eight

Projective Transformation

- Stage to image coordinate transformation is a plane to plane transformation.
- Projective transformation can be used.
- $x=\left(a_{0}+a_{1} x^{\prime}+a_{2} y^{\prime}\right) /\left(1+c_{1} x^{\prime}+c_{2} y^{\prime}\right)$
- $\mathrm{y}=\left(\mathrm{b}_{\mathrm{o}}+\mathrm{b}_{1} \mathrm{x}^{\prime}+\mathrm{b}_{2} \mathrm{y}^{\prime}\right) /\left(1+\mathrm{c}_{1} \mathrm{x}^{\prime}+\mathrm{c}_{2} \mathrm{y}^{\prime}\right)$
- Number of involved parameters: Eight

Comparator to Image Coord. Transformation

- For analog metric cameras, the image coordinate system is defined by the Fiducial marks.
- The image coordinates of the Fiducial marks are available in the camera calibration certificate.
- Using the image and comparator coordinates of the Fiducial marks, we can compute the transformation parameters.

Camera Calibration Certificate (CCC)

Fiducial Marks Coordinates (CCC)

- ID x-Coordinate mm y-Coordinate mm
- 01
-105.999
-105.978
106.022
106.021
-105.978
- 04
105.988

Comparator-to-Image Coordinate Transformation

Images Acquired by Digital Cameras

Digital Cameras: Image Coordinate System

- Fiducial marks are not necessary for digital cameras since the CCD/CMOS sensor is kept fixed relative to the camera body.
- For imagery acquired by digital cameras, the image coordinate system is defined by:
- Central rows $\rightarrow \mathrm{x}$-axis
- Central columns $\rightarrow \mathrm{y}$-axis

Pixel-to-Image Coordinate Transformation

Digital Environment

Image Coordinates

Pixel-to-Image Coordinate Transformation

Digital Environment

$$
\begin{aligned}
& x=\left(y^{\prime}-n_{c} / 2.0\right) \times y_{\text {_ }} \text { pix_size } \\
& y=\left(n_{r} / 2.0-x^{\prime}\right) \times x_{_} \text {pix_size } \\
& \text { where : } \\
& n_{c} \quad \text { Number of columns } \\
& n_{r} \quad \text { Number of rows } \\
& x_{\text {_ }} \text { pix_size Pixel size along the row direction } \\
& y_{\text {_ }} \text { pix_size Pixel size along the column direction }
\end{aligned}
$$

Reduction (Refinement) of Image Coordinates

Distortion Parameters

- Distortion parameters compensate for all the deviations from the assumed perspective geometry.
- Assumed perspective geometry:
- Object point, perspective center, and the corresponding image point lie on a straight line.
- Distortions include (for example):
- Lens distortion (radial \& de-centering)
- Atmospheric refraction
- Non-planar film platen

Assumed Perspective Geometry

(a) Image Point

Radial Lens Distortion

Radial Lens Distortion

- The light ray changes its direction after passing through the perspective center.
- Radial lens distortion is caused by:
- Large off-axial angle
- Lens manufacturing flaws
- Radial lens distortion occurs along a radial direction from the principal point.
- Radial lens distortion increases as we move away from the principal point.

Radial Lens Distortion

Fiducial Center \approx Principal Point

Radial Lens Distortion

- Without distortions

Pin Cushion Type Radial Lens Distortion

Radial Lens Distortion

—— Without distortions —— With distortions Barrel Type Radial Lens Distortion

Radial Lens Distortion

Radial Lens Distortion

Radial Lens Distortion

- Radial lens distortion, $\Delta \mathrm{r}$ as a function of r , is available in the camera calibration certificate in either one of the following forms:
- Graphical form,
- Tabular form, or
- Polynomial coefficients.
- Note: \boldsymbol{r} is the radial distance between the principal point and the image point under consideration.

Radial Lens Distortion

$$
\begin{aligned}
& \Delta x_{\text {Radial Lens Distortion }}=\left(x-x_{p}\right)\left(k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}+\ldots\right) \\
& \Delta y_{\text {Radial Lens Distortion }}=\left(y-y_{p}\right)\left(k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}+\ldots\right)
\end{aligned}
$$

where: $\mathrm{r}=\left\{\left(\mathrm{x}-\mathrm{x}_{\mathrm{p}}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\mathrm{p}}\right)^{2}\right\}^{0.5}$

After Removing Radial Lens Distortion

Before Removing Radial Lens Distortion

After Removing Radial Lens Distortion

Quality of Line Fitting

Lens Cone Assembly

De-centering Lens Distortion

- De-centering lens distortion is caused by misalignment of the components of the lens system.
- De-centering lens distortion has two components:
- Radial component, and
- Tangential component.

De-centering Lens Distortion

De-centering Lens Distortion

De-centering Lens Distortion

$$
\begin{aligned}
& P(r)=J_{1} r^{2}+J_{2} r^{4}+\ldots \ldots \ldots \\
& \Delta r=3 P(r) \sin \left(\phi-\phi_{o}\right) \\
& \Delta t=P(r) \cos \left(\phi-\phi_{o}\right)
\end{aligned}
$$

- $\mathrm{P}(\mathrm{r})$ is the profile along the axis with the maximum tangential distortion.
- ϕ_{0} is the direction of the axis with the maximum tangential distortion.

De-centering Lens Distortion

$$
\begin{aligned}
& \Delta x_{\text {Decentering Lens Distortion }}=\left(1+p_{3} r^{2}\right)\left\{p_{1}\left(r^{2}+2 \bar{x}^{2}\right)+2 p_{2} \bar{x} \bar{y}\right\} \\
& \Delta y_{\text {Decentering Lens Distortion }}=\left(1+p_{3} r^{2}\right)\left\{2 p_{1} \bar{x} \bar{y}+p_{2}\left(r^{2}+2 \bar{y}^{2}\right)\right\}
\end{aligned}
$$

$$
\text { where: } \begin{aligned}
& \mathrm{r}=\left\{\left(\mathrm{x}-\mathrm{x}_{\mathrm{p}}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\mathrm{p}}\right)^{2}\right\}^{0.5} \\
& \bar{x}=x-x_{p} \\
& \bar{y}=y-y_{p} \\
& \cdot \mathrm{p}_{1}=-\mathrm{J}_{1} \sin \phi_{\mathrm{o}} . \\
& \mathrm{p}_{2}=\mathrm{J}_{1} \cos \phi_{\mathrm{o}} . \\
& \mathrm{p}_{3}=\mathrm{J}_{2} / \mathrm{J}_{1} .
\end{aligned}
$$

De-centering Lens Distortion

Camera Calibration Certificate: Example

- Wild Heerbrugg Instruments Inc.
- Camera type: Wild RC10
- Identification number: 2061
- Lens: Wild 15 UAG I
- Identification Number: 6029
- Calibrated Focal Length: $\mathrm{C}=153.167 \mathrm{~mm}$
- Principal point coordinates in the Fiducial system:
$-\mathrm{x}_{\mathrm{p}}=0.001 \mathrm{~mm}$
$-\mathrm{y}_{\mathrm{p}}=-0.053 \mathrm{~mm}$

Camera Calibration Certificate (CCC)

Fiducial Mark Coordinates (CCC)

- ID x -Coordinate mm y -Coordinate mm
- 01
-105.999
-105.978
106.022
106.021
-105.978
- 04
105.988

Camera Calibration Certificate

- Radial Lens Distortion Coefficients:
$-\mathrm{K}_{1}=2.99778547 \mathrm{E}-08 \mathrm{~mm}^{-2}$
$-\mathrm{K}_{2}=-3.15091119 \mathrm{E}-12 \mathrm{~mm}^{-4}$
$-\mathrm{K}_{3}=6.05776623 \mathrm{E}-17 \mathrm{~mm}^{-6}$
- De-centering Lens Coefficients:
$-P_{1}=2.76490955 \mathrm{E}-07 \mathrm{~mm}^{-1}$
$-P_{2}=-1.06518601 \mathrm{E}-06 \mathrm{~mm}^{-1}$

Atmospheric Refraction

- The light ray from the object point to the perspective center passes through layers with different temperature, pressure, and humidity.
- Each layer has its own refractive index.
- Consequently, the light ray will follow a curved not a straight path.
- The distortion occurs along the radial direction from the nadir point.
- It increases as the radial distance increases.

Atmospheric Refraction

Atmospheric Refraction

Fiducial Center \approx Nadir Point

CE 59700: Digital Photogrammetric Systems=
$117=$

Atmospheric Refraction

- $\Delta \mathrm{r}=\mathrm{kr}\left\{1+\mathrm{r}^{2} / \mathrm{c}^{2}\right\}$
- K is the atmospheric refraction coefficient.
- Image points are always displaced outwardly along the radial direction.
- Correction ($\Delta \mathrm{r})$ is always negative.
- The above equation is only valid for almost vertical photography.

Atmospheric Refraction

$$
k=0.00241\left\{\frac{Z_{o}}{Z_{o}^{2}-6 Z_{o}+250}-\frac{Z^{2}}{Z_{o}\left(Z^{2}-6 Z+250\right)}\right\}
$$

Where:
$Z \& Z_{o}$ are in Km above the sea level

$$
\begin{aligned}
& \Delta x=k x\left(\frac{r^{2}}{c^{2}}+1\right) \\
& \Delta y=k y\left(\frac{r^{2}}{c^{2}}+1\right)
\end{aligned}
$$

LCE 59700: Digital Photogrammetric Systems $=119=$

Earth Curvature

- It is not a problem with the image formation process (i.e., it is not a deviation from the assumed perspective geometry).
- It is a problem arising from the way we define the ground coordinate system.
- If the ground coordinates of the GCP are given relative to a true three-dimensional coordinate system, the curvature of the Earth's surface is already taken into account.

Earth Curvature

- If the GCP is given relative to a map coordinate system (e.g., state plane and orthometric height), we have a problem with small scale imagery.
- The Earth surface as reconstructed from the imagery is a spheroid.
- The Earth surface as defined by the GCP is flat.
- In this case, we have to distort the image coordinates in such a way that the Earth surface as reconstructed from the imagery is flat.

Earth Curvature

Earth Curvature Correction (Modification)

Earth Curvature

- If we are dealing with a single image, and if this image is a true vertical image,
- Then, the image coordinates can be changed to compensate for the effect of Earth curvature
- In effect, we get the points depicted in the image plane as if the Earth surface had been totally flat.

$$
\begin{aligned}
& \Delta r=H r^{3} / 2 R c^{2} \\
& \text { H flying height, } \\
& \text { r radial distance from the principal point, } \\
& \text { R radius of the Earth }(6370 \mathrm{Km}), \\
& \text { c principal distance }
\end{aligned}
$$

Earth Curvature

- $\Delta \mathrm{r}$ (correction) is always +ve .
- Nowadays, the GCPs are mainly provided by GPS which provides us with a true 3D (i.e., cartesian) coordinate system.
- Thus, we do not need to apply the earth curvature correction (modification).

Non Planar Film Platen

Non Planar Film Platen

$$
\begin{aligned}
& \mathrm{r} / \mathrm{c}=\mathrm{dr} / \mathrm{dh} \\
& \mathrm{dr}=\mathrm{dh} * \mathrm{r} / \mathrm{c}
\end{aligned}
$$

Non Planar Film Platen

- dh: The deviation of the film platen from a perfect plane.
- Using height gauges, dh can be measured and modeled by a high order polynomial.
- We can assure that the film is positioned tightly against the focal plane using either:
- Glass plates (not recommended)
- Suction mechanisms

Reseau Camera

$$
\begin{aligned}
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++ \\
& ++++++++++++
\end{aligned}
$$

Reseau Camera

Reseau Camera

Reseau Camera

- Reseau: A raster of regularly spaced crosses marked on a glass plate in front of the film platen.
- The images of the crosses will appear on the final image.
- The image coordinates of the grid elements are available in the Camera Calibration Certificate (CCC).
- Comparing the image coordinates of the grid elements in both the image and the CCC, we can correct for the distortions that took place during film development.

Point Classification

- Points can be classified according to:
- How do they appear in the imagery
- Natural targets
- Signalized targets
- Artificial points
- Their role in the adjustment
- Control points
- Check points
- Tie points

Natural Targets

Artificial Points

CE 59700: Digital Photogrammetric Systems

Signalized Targets

$+$

Signalized Targets

=CE 59700: Digital Photogrammetric Systems
$136=$
Ayman F. Habib

Signalized Targets: Preparation

Signalized Targets

Point Classification (II)

- Control Points:
- points whose ground coordinates are available from geodetic measurements (e.g., GNSS).
- They are used to define the datum during the bundle adjustment.
- Origin (three parameters),
- Orientation in space (three parameters), and
- Scale (one parameter).
- A minimum of three (more precisely $21 / 3$) non-collinear ground control points is needed to define the datum.

Ground Control Points: Collection

http://videoindustrial.files.wordpress.com/2011/09/gps.jpg
CE 59700: Digital Photogrammetric Systems

Point Classification (II)

- Tie Points:
- Their function is to tie together overlapping images.
- They should be well defined in the images.
- Their ground coordinates are determined through photogrammetric adjustment.

Tie Points

Point Classification (II)

- Check Points:
- Points whose ground coordinates are available from geodetic measurements.
- In the photogrammetric adjustment, they are used as tie points.
- By comparing the photogrammetric and geodetic coordinates, one can check the quality of the photogrammetric adjustment.

