

Chapters 1 - 5: Overview

- Photogrammetry: introduction, applications, and tools
- GNSS/INS-assisted photogrammetric and LiDAR mapping
- LiDAR mapping: principles, applications, mathematical model, and error sources and their impact.
- QA/QC of LiDAR mapping
- Quaternions & rotation in space
- This chapter will be focusing on the different alternatives for the registration of laser scans.
 - Point-based registration,
 - Feature-based registration, and
 - Image-based registration

Chapter 6

REGISTRATION OF LASER SCANNING POINT CLOUDS

Outline

- Introduction: Terrestrial Laser Scanners (TLS) and applications
- **Prior work**: Registration paradigm, point-based registration, feature-based registration
- Methodology: Linear features extraction, parameter estimation alternatives, matching process, and parameter refinement
- Experimental results: Segmentation and registration results
- Conclusions and future work

Terrestrial Laser Scanners

FARO Focus3D X 330 976,000 points/second 330 m range ±2 mm range error <u>*http://faro.com</u>

Leica Scanner P20 1 million points/second 120 m range ±6mm at100 M position error <u>*http://leica-geosystems.com</u>

Terrestrial Laser Scanner (TLS) refers to LiDAR equipment that is mounted on a tripod.

DPRG

Introduction: TLS Applications

- Digital Building Model generation,
- Cultural heritage documentation,
- Industrial site modeling,
- Landslide hazard analysis, and
- Many other civilian and military applications

http://lidarusa.com

http://lidarusa.com

http://www.3deling.com

Introduction: TLS Applications

Introduction: TLS Registration

- Complex surfaces (or objects) require multiple scans with overlap for a full 3D model:
 - The separate point clouds must be registered to a common reference frame.

Introduction: TLS Registration

- Complex surfaces (or objects) require multiple scans with overlap for a full 3D model:
 - The separate point clouds must be registered to a common reference frame.

DPRG

Introduction: TLS Registration

Laser Scanning

Ayman F. Habib

Registration and Mobile LiDAR Data

- For LiDAR data, which has been captured by a mobile system whether terrestrial or airborne, the point cloud will be given relative to a unified coordinate system.
 Defined by the onboard GNSS/INS unit
- Registration is not necessary for this type of data.
- However, in some situations, systematic errors in the data acquisition system will lead to discrepancies among overlapping point clouds.
- Therefore, we might need to register overlapping mobile LiDAR data.
 - To ensure the alignment of the different datasets, and
 - To evaluate the quality of the system performance (QC).

Registration and Mobile LiDAR Data

- For LiDAR data, which has been captured by a mobile system whether terrestrial or airborne, the point cloud will be given relative to a unified coordinate system.
 Defined by the onboard GNSS/INS unit
- Registration is not necessary for this type of data.
- However, in some situations, systematic errors in the data acquisition system will lead to discrepancies among overlapping point clouds.
- Therefore, we might need to register overlapping mobile

The impact of the systematic errors will lead to **coarsely** registered datasets. Thus we need to only worry about the fine registration of such data.

Introduction: TLS & ALS Registration

Regi	istration Paradigm Elements	DPRG
Registration Primitives	• Features that will be identified in the individual scans, e.g. Points, Lines, and Planar features	,
Transformation Parameters	• Transformation parameters that describe the relationship between the reference frames of the different scans	
Similarity Measure	• Describes the coincidence of conjugate primitives after registering different scans to a common reference frame	
Matching Strategy	• Controlling framework which is used for manipulating primitives, transformation parameters, and similarity measure	
(Habib A. & Al-Ruzouq R. , 2004)		
Laser Scanning	17 Ayman F.	Habib

Registration using Exact Point Correspondence

Fine Registration

Registration: Prior Work

• Registration is performed using corresponding points, which could be signalized targets).

Example of targets used in the registration of terrestrial laser scans (photos courtesy of leica-geosystems)

Laser Scanning

Ayman F. Habib

Registration: Prior Work

• Targets for ALS registration

Example of targets used in the registration of airborne laser scans under special circumstance (photo courtesy of Csanyi & Toth, 2007)

Registration: Point-Based Mathematical Model

$$r_{a_2}^{S_2} = r_{S_1}^{S_2} + SR_{S_1}^{S_2}r_{a_1}^{S_1}$$

- a_1 and a_2 are corresponding points in scans S_1 and S_2 , respectively;
- $r_{a_2}^{S_2}$ is the coordinate of a_2 relative to the reference frame of scan S_2 ;
- $r_{a_1}^{S_1}$ is the coordinate of a_1 relative to the reference frame of scan S_1 ;
- $r_{S_1}^{S_2}$ is the shift between the reference frames of the two scans (relative to the reference frame of scan S_2);
- $-R_{S_1}^{S_2}$ is the rotation matrix between the reference frames of the two scans; and

-Si For LiDAR data, the scale might not be necessary.

DPRG

Registration: Horn's Approach

- Closed form solution, which is based on least-squares adjustment, for estimating the transformation parameters relating two 3D coordinate systems using corresponding points (Horn, 1987)
- Procedure:
 - Estimate the rotation matrix,
 - Estimate the scale factor, and
 - Estimate the shifts.

Registration: Horn's Approach

- Rotation Estimation:
- The first step is evaluating the centroid of the points in each dataset: $\bar{r}^{S_1} = \frac{1}{n} \sum_{i=1}^n r_{a_{1_i}}^{S_1} \& \bar{r}^{S_2} = \frac{1}{n} \sum_{i=1}^n r_{a_{2_i}}^{S_2}$
- Subtract the centroid from each of the coordinates of the different points in both datasets & derive the corresponding unit vector:

$$\begin{aligned} \dot{r}_{a_{1_{i}}}^{S_{1}} &= (r_{a_{1_{i}}}^{S_{1}} - \bar{r}^{S_{1}}) / \left\| (r_{a_{1_{i}}}^{S_{1}} - \bar{r}^{S_{1}}) \right\| \\ \dot{r}_{a_{2_{i}}}^{S_{2}} &= (r_{a_{2_{i}}}^{S_{2}} - \bar{r}^{S_{2}}) / \left\| (r_{a_{2_{i}}}^{S_{2}} - \bar{r}^{S_{2}}) \right\| \end{aligned}$$

• Then, we can write the following constraint:

$$\dot{r}_{a_{2_{i}}}^{S_{2}} = R_{S_{1}}^{S_{2}} \dot{r}_{a_{1_{i}}}^{S_{1}}$$

Registration: Horn's Approach

- **Rotation Estimation:**
- Using quaternions, we can derive the rotation matrix $R_{S_1}^{S_2}$ through the following procedure.

$$\hat{f}_{a_{2_{i}}}^{S_{2}} = R_{S_{1}}^{S_{2}} \hat{f}_{a_{1_{i}}}^{S_{1}} + e_{i}$$

• We need to derive $R_{S_1}^{S_2}$ that minimizes the Sum of Squared Errors.

$$\min_{\substack{R_{S_{1}}^{S_{2}} \\ R_{S_{1}}^{S_{2}} i = 1}} \sum_{i=1}^{n} e_{i}^{T} e_{i} = \min_{\substack{R_{S_{1}}^{S_{2}} \\ R_{S_{1}}^{S_{2}} i = 1}} \sum_{i=1}^{n} \left(\dot{r}_{a_{2_{i}}}^{S_{2}} - R_{S_{1}}^{S_{2}} \dot{r}_{a_{1_{i}}}^{S_{1}} \right)^{T} \left(\dot{r}_{a_{2_{i}}}^{S_{2}} - R_{S_{1}}^{S_{2}} \dot{r}_{a_{1_{i}}}^{S_{1}} \right)$$

$$= \min_{\substack{R_{S_{1}}^{S_{2}} \\ R_{S_{1}}^{S_{2}} i = 1}} \sum_{i=1}^{n} \dot{r}_{a_{2_{i}}}^{S_{2}} \dot{r}_{a_{2_{i}}}^{S_{2}} + \dot{r}_{a_{1_{i}}}^{S_{1}} \dot{r}_{a_{1_{i}}}^{S_{1}} - 2\dot{r}_{a_{1_{i}}}^{S_{1}} R_{S_{1}}^{S_{2}} \dot{r}_{a_{2_{i}}}^{S_{2}}$$

Quaternion-Based Derivation of $R_{S_1}^{S_2}$

• **Rotation Estimation:**

• **Rotation Estimation:**

$$S_{i} = \bar{C} \left(\dot{r}_{a_{1_{i}}}^{S_{1}} \right)^{T} C \left(\dot{r}_{a_{2_{i}}}^{S_{2}} \right)$$

$$S_{i}(1,1) = \dot{r}_{a_{1_{i_{0}}}}^{S_{1}} \dot{r}_{a_{2_{i_{0}}}}^{S_{2}} + \dot{r}_{a_{1_{i_{x}}}}^{S_{1}} \dot{r}_{a_{2_{i_{x}}}}^{S_{2}} + \dot{r}_{a_{1_{i_{y}}}}^{S_{1}} \dot{r}_{a_{2_{i_{y}}}}^{S_{2}} + \dot{r}_{a_{1_{i_{x}}}}^{S_{1}} \dot{r}_{a_{2_{i_{y}}}}^{S_{2}} + \dot{r}_{a_{1_{i_{x}}}}^{S_{1}} \dot{r}_{a_{2_{i_{y}}}}^{S_{2}} + \dot{r}_{a_{1_{i_{x}}}}^{S_{1}} \dot{r}_{a_{2_{i_{y}}}}^{S_{2}} + \dot{r}_{a_{1_{i_{0}}}}^{S_{1}} \dot{r}_{a_{2_{i_{0}}}}^{S_{2}} - \dot{r}_{a_{1_{i_{y}}}}^{S_{1}} \dot{r}_{a_{2_{i_{y}}}}^{S_{2}} - \dot{r}_{a_{1_{i_{y}}}}^{S_{1}}$$

Remember that
$$\dot{r}_{a_{1_i}}^{S_1} \& \dot{r}_{a_{2_i}}^{S_2}$$
 are pure quaternions.
Trace $(S_i) = 0$
Trace $S = 0$

Quaternion-Based Derivation of $R_{S_1}^{S_2}$

• **Rotation Estimation:**

$$\max_{\dot{q}} \dot{q}^{T} S \dot{q} , \qquad \|\dot{q}\| = 1$$
$$\max_{\dot{q}} \varphi(\dot{q}) = \dot{q}^{T} S \dot{q} - 2\lambda (\dot{q}^{T} \dot{q} - 1)$$
$$\frac{\partial \varphi}{\partial \dot{q}} = 2S \dot{q} - 2\lambda \dot{q} = 0$$
$$S \dot{q} = \lambda \dot{q}$$

This is the case only when \dot{q} is the eigenvector of **S**.

$$\dot{q}^T S \dot{q} = \dot{q}^T \lambda \dot{q} = \lambda \dot{q}^T \dot{q} = \lambda$$

 $\dot{q}^T S \dot{q}$ will be maximum when \dot{q} is the eigenvector of S that corresponds to the largest eigenvalue.

Quaternion-Based Derivation of $R_{S_1}^{S_2}$

• **Rotation Estimation:**

$$R_{S_{1}}^{S_{2}} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$r_{11} = q_{x}^{2} + q_{o}^{2} - q_{z}^{2} - q_{y}^{2}$$

$$r_{12} = 2q_{x}q_{y} - 2q_{o}q_{z}$$

$$r_{13} = 2q_{x}q_{z} + 2q_{o}q_{y}$$

$$r_{21} = 2q_{x}q_{y} + 2q_{o}q_{z}$$

$$r_{22} = q_{y}^{2} - q_{z}^{2} + q_{o}^{2} - q_{x}^{2}$$

$$r_{23} = 2q_{y}q_{z} - 2q_{o}q_{x}$$

$$r_{31} = 2q_{x}q_{z} - 2q_{o}q_{y}$$

$$r_{32} = 2q_{y}q_{z} + 2q_{o}q_{x}$$

$$r_{33} = q_{z}^{2} - q_{y}^{2} - q_{x}^{2} + q_{o}^{2}$$
Laser Scanning

Ayman F. Habib

Estimation of the Scale Factor & Translation

- Scale and Shift Estimation:
- The scale factor can be derived according to the following formula:

$$\bar{r}_{a_{1_i}}^{S_1} = \left(r_{a_{1_i}}^{S_1} - \bar{r}^{S_1}\right) \& \bar{r}_{a_{2_i}}^{S_2} = \left(r_{a_{2_i}}^{S_2} - \bar{r}^{S_2}\right)$$

$$S = \left(\sum_{i=1}^{n} \left\| \bar{r}_{a_{2_{i}}}^{S_{2}} \right\|^{2} / \left\| \sum_{i=1}^{n} \left\| \bar{r}_{a_{1_{i}}}^{S_{1}} \right\|^{2} \right)^{1/2}$$

• The translation component can be estimated as follows:

$$r_{S_1}^{S_2} = \frac{1}{n} \sum_{i=1}^{n} (r_{a_{2_i}}^{S_2} - SR_{S_1}^{S_2}r_{a_{1_i}}^{S_1})$$

Point-Based Registration without Exact Point-to-Point Correspondence

Fine Registration

Registration: Prior Work

- Commonly Adopted Point-Based Registration Methodologies without Exact Point-to-Point Correspondence:
 - The Iterative Closest Point "ICP" (Besl and Mckay, 1992)
 - The Iterative Closest Patch "ICPatch" (Habib et al., 2010)
 - The Iterative Closest Projected Point "ICPP" (*Al-Durgham et al., 2011*)
- Point-based registration methodologies require good initial approximations of the transformation parameters, which could be established through manual interaction.

Note: ICP assumes point-to-point correspondence which is invalid among LiDAR points due to the irregular sampling nature of the points.

Registration: Prior Work

- Iterative Closest Point (ICP):
 - Besl and McKay (1992)
 - Points as primitives
 - 3D rigid body transformation
 - Minimizes Euclidian distances
 - Performed iteratively

Problem:

Exact point
 correspondences cannot
 be guaranteed when
 dealing with irregular
 point clouds.

- Iterative Closest Point (ICP): Variants
 - Points and triangular irregular network (TIN) patches
 - 3D similarity transformation
 - Coplanarity constraint and modified weight matrix
 - Performed iteratively

- Iterative Closest Patch (ICPatch):
 - Conditions for valid conjugate point-patch pairs:
 - ✓ Triangular patch $\Delta p_1 p_2 p_3$ must be the closest to the transformed point p_t , i.e. *n*=min.
 - \checkmark The normal distance, *n*, must be within a threshold.
 - ✓ The projection of p_t , p', must fall within $\Delta p_1 p_2 p_3$.

DPRG

- Iterative Closest Patch (ICPatch):
- Similarity Measure: p_1 , p_2 , p_3 and p_t are assumed to be coplanar, i.e. the volume of the pyramid formed by vertices p_1 , p_2 , p_3 and p_t should be zero.

- Iterative Closest Patch (ICPatch):
- Similarity measure: $p_3 = p_t + random \ error \ \& \ discrepancy vector$
 - Correspondence assumption is not true.
 - Point-based procedure, while using non-conjugate points from a valid point-patch pair
 - Modify weights so the misclosure vector is minimized in the direction normal to the TIN patch. $\begin{bmatrix} U \end{bmatrix} \begin{bmatrix} X \end{bmatrix}$

- Iterative Closest Projected Point (ICPP):
 - For a point p in S_1 , find the *closest* three points in S_2 .
 - A match is established between a point in S₁ and a triangle (p₁, p₂, p₃) in S₂.

The pair (p_t, p') is used for matching through the conventional ICP techniques, thus named the ICPP.

$$0 = r_2^m + R_2^m p' - (r_1^m + R_1^m p)$$

Conditions:

- $p_t \in Convex(p_1, p_2, p_3, p_e)$
- Compatible surface normals

Laser Scanning

Feature-Based Registration

Coarse Registration

Laser Scanning

Ayman F. Habib

- Registration Methodologies Based on Linear and Planar Features:
 - Linear and planar features provide strong link between laser scans, and a good initial approximation of the transformation parameters is not required.
 - Linear and planar features can be utilized to register TLS data using different features individually and also by combining some of them (*Jaw and Chuang*, 2008).
 - Photogrammetric data can be incorporated to take advantage of additional information *(Canaz and Habib, 2013)*.
 - Manual identification of conjugate features is usually required.

- Registration Methodologies Based on Linear and Planar Features:
 - An automatic registration method of laser scans using extracted linear and planar features is proposed by Yao et al., 2010.
 - Measures that describe the shape and distribution of groups of linear features in 3D space are proposed.
 - The line-based approach usually failed in outdoor environments.
 - Sensitive to existing symmetries present in the extracted features

- In total, 7 transformation parameters $(X_T, Y_T, Z_T, \omega, \varphi, \kappa, S)$ can be estimated using two skew lines.
- Two coplanar and non-parallel lines are enough for the estimation of the shift and rotation parameters (scale is defined by the range measurements).

DPRG

Objective & Methodology

- Develop a matching strategy for the automatic registration of terrestrial laser scans in a pairwise fashion using 3D linear features:
 - Linear features extraction from TLS scans
 - Mathematical model for estimating the transformation parameters
 - Invariant characteristics of 3D linear features for the matching strategy & RANSAC approach
 - Iterative Closest Projected Point (ICPP) for identifying the most probable matches among the linear features and the refinement of the transformation parameters

DPRG

Methodology: Primitive Extraction

- Linear Features Extraction from Terrestrial Laser Scans:
 - Planar patch segmentation and intersection for the extraction of linear features (*Lari and Habib, 2014*)
 - A region growing methodology for the extraction of cylindrical/linear features from the scans

Region growing methodology for the extraction of cylindrical/linear features

Methodology: Primitive Extraction

- Linear Features Extraction from Terrestrial Laser Scans:
 - Parameter-domain segmentation for planar patch detection and intersection for the extraction of linear features
 - Adaptive cylinder analysis for local point density estimation and attribute derivation
 - Parameter-domain segmentation
 - Intersection of neighboring planar features
 - Projection of planar points within a buffer onto the intersection line

Methodology: Primitive Extraction

- Linear Features Extraction from Terrestrial Laser Scans:
 - Parameter-domain segmentation for planar patch detection and intersection for the extraction of linear features

DPRG

Methodology: Primitive Extraction

- Linear Features Extraction from Terrestrial Laser Scans:
 - Region growing methodology for the extraction of cylindrical/linear features
 - PCA and adaptive cylinder analysis for local point density estimation and identification of seed points
 - Minimum/non-singular parameterization of cylindrical/linear features
 - Region growing segmentation
 - Projection of points onto the linear feature or the axis of the cylindrical feature

- Linear Features for the Estimation of Transformation Parameters <u>(Non-Linear Mathematical Model)</u>:
 - Due to the nature of the linear feature extraction procedure, <u>the</u> <u>definition of the line end points is quite arbitrary (non-</u> <u>corresponding end points)</u>.

- Linear Features for the Estimation of Transformation Parameters <u>(Non-Linear Mathematical Model)</u>:
 - Weight modification to account for the non-corresponding end points along conjugate linear features (Renaudin et al., 2011)

$$\vec{y}_{(3\times1)} = A_{(3\times7)} \vec{x}_{(7\times1)} + \vec{dx}_{(3\times1)} + \vec{e}_{(3\times1)}$$
$$\vec{e} \sim (0,\Sigma) \quad , \ \Sigma = \sigma_0^2 P^{-1}_{(3\times3)}$$

– Change the stochastic properties of the random noise vector:

$$\dot{\Sigma} \{ \vec{e} \} = \sigma_0^2 \dot{P}^+_{(3 \times 3)}, \quad \dot{P} \vec{dx} = 0$$

 Linear Features for the Estimation of Transformation Parameters (Linear Mathematical Model):

$$\overrightarrow{e} = R \overrightarrow{\widehat{c}} - \overrightarrow{\widehat{a}}$$

– By applying the least-squares principle:

 $\Sigma \overrightarrow{e}^T \overrightarrow{e} = minimum$

$$\Sigma \overrightarrow{e}^T \overrightarrow{e} = \sum (\overrightarrow{\widehat{c}}^T \overrightarrow{\widehat{c}} + \overrightarrow{\widehat{a}}^T \overrightarrow{\widehat{a}} - 2 \overrightarrow{\widehat{a}}^T \mathbf{R} \overrightarrow{\widehat{c}})$$

 $\Sigma \overrightarrow{e}^T \overrightarrow{e}$ is minimum when $\sum (\overrightarrow{a}^T \mathbf{R} \overrightarrow{c})$ is maximum

Laser Scanning

- Linear Features for the Estimation of Transformation Parameters <u>(Linear Mathematical Model)</u>:
 - Using quaternion (Q = $q_0 + q_1i + q_2j + q_3k$) to represent \vec{a} , \vec{c}

- A =
$$(0, \vec{a})$$
, C = $(0, \vec{c})$

- $\sum (\overrightarrow{\hat{a}}^T \ \mathbb{R} \ \overrightarrow{\hat{c}}) = \operatorname{Max} \sum A^T \ \mathbb{Q} \ C \ \mathbb{Q}^* \to \mathbb{Q}^T \ \mathbb{N}_{(4 \times 4)} \ \mathbb{Q}$
- The unit quaternion Q that maximizes $Q^T N_{(4 \times 4)} Q$ is the eigenvector that corresponds to the largest eigenvalue of N.
- *R* can be derived using this eigenvector.

Shifts can be derived using the mid-point of the common perpendicular line.

$$\begin{bmatrix} X_T \\ Y_T \\ Z_T \end{bmatrix} = \vec{p} - R_{(3 \times 3)} \vec{p}$$

ullet

Methodology: Matching Strategy Linear Features for the Estimation of Transformation Parameters (Linear Mathematical Model): – Directional Ambiguity (Skew Lines) Line c Line c

• Matching Ambiguity: For line pairs whose angular and spatial separations are the same, there will be an ambiguity in the automatic matching process.

- Number of Possible Combinations for Laser Scans (1, 2):
 - # line pairs in Scan 1= n(n-1)/2, "n" number of lines in scan 1
 - # line pairs in Scan 2= m(m-1), "m": number of lines in scan 2
 - All possible combinations of line pair = $\frac{n(n-1)}{2} \times m(m-1)$
 - <u>Candidate matches</u> are line pairs which have similar angular and spatial separation values (n_{ct}) .

- Required RANSAC Trials (Stopping Criteria):
 - The number of the required RANSAC trials is determined as a function of the total number of hypothesized matches and the number of compatible line matches in each trial.
 - Probability of having <u>at least one</u> correct combination of conjugate line pairs after N trials/draws = 0.99 (pre-specified)
 - Probability of having a correct draw of conjugate line pairs:

 $\frac{\text{number of matching pairs (Inliers)}}{\text{number of candidate matches }}$

• Required RANSAC Trials (Stopping Criteria):

 Probability of not having a correct draw of conjugate line pairs after N trials:

$$1 - 0.99 = \left(1 - \frac{\text{number of Inliers}}{\text{number of candidate matches}}\right)^{N}$$

- Required trials:

$$N = \frac{\log(1 - 0.99)}{\log\left(1 - \frac{\text{number of Inliers}}{\text{number of candidate matches}}\right)}$$

- The number of inlieres is determined in each RANSAC trial as $\frac{m_l (m_l-1)}{2}$, m_l : number of matched/compatible lines

- ICPP Registration (Parameter Refinement):
 - Refines the estimated transformation parameters
 - Derives the compatible matches among points in the scans

Association-Based Sample Consensus Approach for the Registration of TLS Scans using Linear Features

Association-based Sample Consensus Approach

• To identify the correspondences between linear features in the overlapping scans, an (n × m) association matrix is constructed with its elements initialized to zero

-n, m: is number of lines in the two scans

- The construction of the association matrix starts by identifying the line pairs in the overlapping scans that have similar angular and spatial separations taken two at a time.
- For any matched line pairs, increase the votes in the corresponding elements in the association matrix.
- This process is repeated until all the pairs with similar angular and spatial separations are considered.
Association-based Sample Consensus Approache **Example of constructing the Association Matrix:** • Scan 1 **Building Model** Scan 2 Laser Scanning Ayman F. Habib 73

Association-based Sample Consensus Approache Association ambiguity: ullet**b3** a7 a3 **a**5 a6 **b1 b4 a8** a4 a1 a2 **b**2 Scan 1 Scan 2 Laser Scanning Ayman F. Habib 75

Solution Frequency Approach for the Registration of TLS Scans using Linear Features

Solution-Frequency Approach

- The candidate matches of linear features are used to solve for the transformation parameters.
- Hypothesis: Among all the candidate matches, conjugate linear features will lead to similar sets of transformation parameters.
- By using each set of transformation parameters individually to transform a certain 3D point, similar transformation parameters will lead to a group of transformed points, which are spatially close to each other.

Solution-Frequency Approach

- Option to store transformation parameters
 - All the estimated transformation parameters can be stored in two separate Kd-Trees
 - (two Kd-Trees instead of one to avoid spatial deformation when using 6 dimensions):
 - Kd-Tree 1 \rightarrow (XT, YT, ZT)
 - Kd-Tree 2 \rightarrow (ω , ϕ , κ)
 - Starting from Kd-Tree 2, find the most repeated set of rotation angles (rotations peak). For this peak, find the most repeated translations associated with those rotation angles.
 - Exhaustive search that might lead to wrong peak for the translations

Real Datasets

Laser Scanning

Ayman F. Habib

 Power Plant Dataset
Scanner Specifications: Range: 0.6m - 120m
122,000 pts/sec ~ Max
Ranging error = ± 2mm at 25m

Scans:

5-050 %5-140%5-250%5-335%5-450%5-690%	Scans ID	Rough Overlap Percentage
5-1 40% 5-2 50% 5-3 35% 5-4 50% 5-6 90%	5-0	50 %
5-2 50% 5-3 35% 5-4 50% 5-6 90%	5-1	40%
5-3 35% 5-4 50% 5-6 90%	5-2	50%
5-4 50% 5-6 90%	5-3	35%
5-6 90%	5-4	50%
	5-6	90%

FARO Focus3D S

Scans are down-sampled to 400 pts/m²

*FARO Laser Scanner Focus3D Manual October 2011

Laser Scanning

Ayman F. Habib

Power Plant Dataset: •

DPRG

Experimental Results (I)

- Power Plant Dataset: Segmentation
 - Long and precise fitting of lines:

Scan ID	Number of Linear Features
0	33
1	43
2	46
3	33
4	68
5	93
6	85

Lines > 1m, Sigma < .1m

• Power Plant Dataset: Registration

• RANSAC approach: all combinations

Scans ID	# Combinations	Candidate matches	Solutions	Order of most probable solution (1)	Order of most probable solution (2)
5-0	4,517,568	14,828	154	148	11,320
5-1	7,726,068	26,944	130	86	7,518
5-2	8,855,460	60,446	418	62	7,246
5-3	4,517,568	13,708	120	2	364
5-4	1,949,0568	86,824	667	523	79,719
5-6	30,544,920	175,004	856	477	115,106

Combinations: total number of line pairs combinations in the scans Candidate matches: lines with similar angular and spatial separation values Solutions: number of times in which 3 lines aligned (7 lines for scans 5 and 6)

- (1) Order among the solutions
- (2) Order among the conducted trials

Laser Scanning

• Power Plant Dataset: Registration

• Association approach: all combinations

Scans ID	Combinations	Candidate matches	Solutions	Order of most probable solution (1)	Order of most probable solution (2)
5-0	4,517,568	14,828	154	65	614
5-1	7,726,068	26,944	130	52	1,786
5-2	8,855,460	60,446	418	306	4,559
5-3	4,517,568	13,708	120	40	377
5-4	19,490,568	86,824	667	346	3,470
5-6	30,544,920	175,004	856	458	5,022

Combinations: total number of line pairs combinations in the scans Candidate matches: lines with similar angular and spatial separation values Solutions: number of times in which 3 lines aligned (7 lines for scans 5 and 6)

- (1) Order among the solutions
- (2) Order among the conducted trials

Laser Scanning

- Power Plant Dataset: Registration
 - Association and Vs. RANSAC (probability)

RANSAC

Scan ID	Number of Trials	Number of Solutions
5-0	2,594	36
5-1	2,725	34
5-2	2,928	40
5-3	6,010	19
5-4	12,985	26
5-6	4,399	3

- Power Plant Dataset: Registration
 - Association and Vs. RANSAC (probability)

Association

Scan ID	Number of Trials	Number of Solutions
5-0	1,002	75
5-1	2,725	82
5-2	2,928	241
5-3	6,010	120
5-4	3,460	344
5-6	1,964	149

DPRG

Experimental Results (I)

- Power Plant Dataset: Registration
 - Frequency-Based Approach

Scans ID	Candidate	Peak Size
	matches	(transformed center)
5-0	14,828	78
5-1	26,944	104
5-2	60,446	165
5-3	13,708	23
5-4	86,824	132
5-6	175,004	769

- Power Plant Dataset: Registration
 - Transformation Parameters using linear features

Scans ID	XT (<i>M</i>)	YT (<i>M</i>)	ZT (<i>M</i>)	(U) ⁰	φ°	κο
0	5.7652	16.203	3.321	-5.492	-4.456	30.192
1	4.3278	14.506	8.243	-8.053	-1.533	19.743
2	-14.911	-7.061	8.223	2.202	0.907	-11.092
3	-4.7681	1.652	18.215	-4.181	-9.783	14.011
4	-35.187	-6.675	-5.499	1.267	-6.864	-40.798
5	0	0	0	0	0	0
6	5.974	14.266	6.345	-0.374	-1.390	9.253

RANSAC approach

• Power Plant Dataset: Registration

Ronald McDonald House

				F	$\overline{\mathbf{X}}$	ne	rii	ne	ent	ิลโ	R	esi	11	S)				DPRG
	Line ID	a1	a2	a3	a4	a5	a6	a7	a8	a9	a11	a13	a14	a17	a19	/ a21	a22	a23	a24	a26
	b1	4	0	4	4	2	12	12	12	0	16	0	4	18	4	22	4	4	2	4
	b2	4	2	4	4	0	12	14	12	0	16	0	4	19	6	22	4	4	3	4
	b3	2	3	10	10	5	18	17	18	0	25	0	5	24	5	32	6	8	0	6
	b4	4	2	0	4	6	2	0	0	0	4	0	0	2	3	0	0	0	5	0
	b5	4	2	0	4	7	2	0	1	0	4	0	0	2	3	0	0	0	5	0
	b6	1	2	4	4	16	3	6	3	2	9	2	5	15	4	4	4	1	6	3
	b7	3	1	2	5	7	9	11	8	1	14	1	5	18	4	16	5	3	1	4
	b8	2	6	9	6	3	12	17	12	4	25	4	4	20	5	30	7	8	3	7
	b12	1	0	6	6	2	18	19	18	0	25	0	8	24	7	21	6	2	2	7
	b13	1	3	1	1	0	1	2	1	2	6	2	0	2	2	7	2	1	3	1
	b14	1	0	1	3	1	0	3	0	1	3	1	0	2	0	3	3	1	1	2
	b15	0	2	0	1	0	1	0	0	1	0	1	0	0	2	0	0	1	9	0
	b17	0	1	1	1	0	0	3	0	3	5	2	0	3	0	2	2	1	4	2
	b18	3	5	7	9	6	20	18	19	1	30	1	5	24	7	32	9	8	0	6
	b19	4	1	2	1	5	3	7	3	3	11	3	5	9	6	11	3	2	2	3
	b20	1	4	7	6	4	9	16	8	1	18	1	8	16	6	20	6	6	3	4
	b21	3	5	8	7	2	12	17	12	6	23	5	5	21	6	31	6	7	1	5
	b22	2	5	6	4	3	8	11	8	3	13	3	8	19	2	18	2	4	1	2
	b23	2	3	9	10	6	19	20	17	1	26	1	9	25	7	27	5	6	0	5
	b24	4	1	2	1	5	3	7	3	3	11	3	5	9	6	11	3	2	2	3
	b26	0	5	11	6	5	13	17	13	1	19	1	9	24	7	26	5	6	4	4
	b27	2	3	11	9	5	18	19	18	0	25	0	5	24	5	29	7	6	0	6
	b28	0	2	0	1	0	1	2	1	0	3	0	1	3	5	1	0	1	5	0
	b29	2	4	9	7	2	12	16	13	3	25	3	3	21	6	31	9	8	0	6
		Exa	am	ple	of	an	asso	ocia	tion	ma	atri	x fi	ron	1 SC	ans	5 1	and	13		
ase	r Scannir	ıg								104								Ayn	nan F.	Habib

Scans 1,2,3, and 4 registered together

Side view of the registered scans

Laser Scanning

Ayman F. Habib

Conclusions

- The proposed research outlined several approaches for the automatic registration of terrestrial laser scans using linear features.
- Parameter-domain and region growing approaches for the extraction of linear features from terrestrial laser scans are introduced.
- The synergistic integration of two different registration methodologies (i.e., linear features and ICPP) helps in overcoming the drawbacks of each method.
- The registration results for the electrical substation are satisfactory.

Current & Future Work

- Develop an automatic matching procedure that will be able to estimate the transformation parameters between multiple laser scans simultaneously
- Utilize non-positional point cloud characteristics such as intensity/RGB information for the automatic matching process
- Hypothesis generation using more than two lines at a time
- Recognition and modeling of objects of interest

Planar and Linear Feature-Based Registration of Terrestrial Laser Scans with Minimal Overlap Using Photogrammetric Data

CASE STUDY

3D Data Derivation

• 3D data can be obtained through either **photogrammetric** or laser scanning systems.

Camera

source: http://www.dpreview.com

Laser Scanner source: http://swissmon.com/images

Registration: Introduction

• Relationship between the TLS scans and a reference frame has to be estimated to align the scans relative to a single coordinate system: "*registration Problem*".

Registration: Introduction

- The most commonly used method for registering 3D data is the "Iterative Closes Point" (ICP); Besl and McKay, 1992.
 - Similar method to the ICP; Chen and Medioni 1992
- These registration methods require large overlap area among the scans.
- In this research, the large overlap area requirement among the scans is reduced using photogrammetric data, which can be acquired in a relatively short time, as additional information.

Research Objectives

- The primary objective of this research is to avoid the large overlap area requirement among the TLS scans using photogrammetric data (planar & linear features).
- The second objective is to compare and analyze the results of the planar and linear feature-based registration approaches using quality control techniques.
- A quantitative quality control is proposed by calculating the point to plane normal distance between the registered surfaces.

Proposed Approach: Conceptual Basis

- Capture TLS data with minimal overlap
- Capture overlapping images of the object of interest
 - Generate 3D features (planar or linear features) from the photogrammetric model, which is defined relative to an arbitrary reference frame: <u>Photogrammetrically Reconstructed Data</u> (PRD)
- Least-Squares Adjustment (LSA) for the registration of the TLS data using the PRD
 - Derive the corresponding TLS features to those in the PRD
 - The TLS data is aligned relative to the photogrammetric model, which is finally aligned to the global reference frame.
 - This is done through a single step procedure.

Registration Paradigm

Registration Primitives: Points, planar, and linear features are possible primitives.

Registration Paradigm

- Transformation Parameters: Rigid body transformation
- -The photogrammetric model and TLS scans need to be rotated, scaled, and shifted until they fit at the global coordinate system.
- *Similarity Measure:* Mathematically describes the coincidence of conjugate primitives after applying the appropriate transformation parameters
- *Matching Strategy:* Utilizes primitives, similarity measure, and transformation parameters to automatically solve the registration problem

Features Extraction: Photogrammetric Data

Planar Features

Three or four non-collinear points are observed in multiple images and their object space coordinates are estimated through the bundle adjustment procedure.

Features Extraction: Laser Scanning Data

Planar Features

• A segmentation procedure, which is established by Lari et al. (2011), is used to derive the planar features within the building in question.

P8

- randomly selected points (three or more noncollinear points).
- The number of points is equivalent to the number of points defining the corresponding planar feature in the PRD (no need for conjugate points).

Features Extraction: Photogrammetric Data

Linear Features

- $\overrightarrow{V_1}$: the vector connecting the perspective center to the beginning point along the line in object space;
- $\overline{V_2}$: the vector connecting the perspective center to the ending point along the line in object space;
- $\overrightarrow{V_3}$: the vector connecting the perspective center to the intermediate point along the
 - The linear feature in the PRD will be represented by two points.

Linear Features

• Two points, which define the linear features, are extracted automatically through the intersection of neighboring segmented planes (Al-Durgham, 2007; Lari et al, 2011).

- The TLS linear feature will be represented by two points.
- No need for conjugate points along the TLS and PRD linear features

Transformation Parameters–Similarity Measure Point-Based 3D Similarity Transformation

$$\vec{X}_{scan_i/PRD} = \vec{X}_{T_{scan_i/PRD}} + S_{scan_i/PRD} R_{scan_i/PRD} \vec{X}_G$$

PRD = Photogrammetrically Reconstructed Data

 $scan_i/PRD = scan \text{ or } PRD$

- \vec{X}_G : coordinates in the global reference frame
- $\vec{X}_{scan_i/PRD}$: the observation vector (model coordinates)
- $\vec{X}_{T_{scan_i/PRD}}$: the translation vector between $scan_i/PRD$ and global coordinate system (reference scan)
- $S_{scan_i/PRD}$: the scale factor between $scan_i/PRD$ and global coordinate system
- $R_{scan_i/PRD}$: the rotation matrix relating $scan_i/PRD$ and global coordinate system; defined by the angles: Ω , Φ , and K

Dataset Description

• 4 minimally overlapping TLS scans were collected using a Trimble GS200 scanner around the Rozsa Center (UofC).

Rozsa Center (http://arts.ucalgary.ca/theatres/conferences/)

Dataset Description

• 16 images of the Rozsa Center were collected for photogrammetric object reconstruction using a Canon EOS Rebel XS camera.

Ayman F. Habib

Results: Planar Feature-Based Registration

	XT (m)	YT (m)	ZT (m)	Scale	Ω (°)	Φ (°)	K (°)
TLS scan1	0	0	0	1	0	0	0
TIS soon?	-23.186	-14.801	-0.687	1	0.234	-0.429	8.373
I LS Scall2	(±0.0287)	(±0.0219)	(± 0.0805)		(±0.1133)	(±0.2092)	(± 0.0484)
TI Sacan?	69.677	92.511	1.335	1	0.243	0.313	121.373
I LS scans	(±0.0221)	(±0.0293)	(±0.0431)		(±0.0624)	(±0.0781)	(± 0.0441)
TISsee	-41.693	91.370	-0.251	1	-0.291	0.165	-145.531
I LS Scall4	(±0.0298)	(±0.0234)	(±0.0916)		(±0.1273)	(±0.0769)	(± 0.0447)
	5.372	1.610	37.383	0.998	30.584	-74.546	91.168
rkD	(±0.0184)	(±0.0163)	(±0.0143)	(±0.0003)	(±0.2271)	(±0.0419)	(±0.2261)

Results: Planar Feature-Based Registration

Results: Linear Feature-Based Registration

	XT (m)	YT (m)	ZT (m)	Scale	Ω (°)	Φ (°)	K (°)
TLS scan1	0	0	0	1	0	0	0
TLS scan2	-23.217	-14.792	-0.667	1	0.869	1.073	8.421
	(±0.0685)	(±0.0341)	(±0.1226)		(±0.2571)	<mark>(±0.5158)</mark>	(±0.1569)
TI Sama	69.639	92.565	1.284	1	0.681	0.824	121.411
I LS scans	(±0.0661)	(± 0.0646)	<mark>(±0.7231)</mark>	1	(±0.4161)	(±0.5422)	(±0.1071)
TI S soom 4	-41.787	91.305	-0.751	1	-0.803	0.009	-145.441
1 LS scan4	(±0.0983)	(±0.0724)	<mark>(±0.3747)</mark>	1	(±0.4175)	(±0.2541)	(±0.1263)
PRD	5.461	1.635	37.384	0.998	31.338	-74.372	91.914
	(±0.0722)	(±0.0393)	(±0.0336)	(±0.0006)	(±0.8272)	(±0.1408)	(±0.7643)

Ayman F. Habib

Results: Linear Feature-Based Registration

Linear Feature-Based Registration

• <u>Potential Problem</u>: Occurs when the derived linear features from neighboring plane intersections might not correspond to physical linear features that could be identified in the imagery.

Linear Feature-Based Registration

Potential Problem:

Comparison with the ICPP

TLS	Daramatars	the ICPP	Planar based	Linear based	the ICPP vs.	the ICPP vs.	Linear vs.
scans	Farameters	method	registration	registration	planar based	linear based	planar based
	XT (m)	-23.258	-23.186	-23.217	-0.072	-0.041	0.031
	YT (m)	-14.733	-14.801	-14.792	0.067	0.058	-0.009
ті с	ZT (m)	-0.605	-0.687	-0.667	0.082	0.062	-0.020
TLO scan?	Scale	1	1	1	0	0	0
scan2	$\Omega(^{\mathrm{o}})$	0.177	0.234	0.869	-0.056	<mark>-0.691</mark>	<mark>-0.635</mark>
	φ(°)	-0.189	-0.429	1.073	0.239	<mark>-1.262</mark>	<mark>-1.502</mark>
	κ(°)	8.168	8.373	8.421	-0.204	-0.252	-0.048
	XT (m)	69.613	69.677	69.639	-0.063	-0.025	0.038
	YT (m)	92.579	92.511	92.565	0.068	0.014	-0.054
TLS scan3	ZT (m)	1.375	1.335	1.284	0.040	0.091	0.051
	Scale	1	1	1	0	0	C
	$\Omega(^{o})$	0.095	0.243	0.681	-0.147	-0.585	-0.438
	φ(°)	0.194	0.313	0.824	-0.118	-0.629	-0.511
	κ(°)	121.388	121.373	121.411	0.015	-0.022	-0.038
	XT (m)	-41.751	-41.693	-41.787	-0.057	0.036	0.094
	YT (m)	91.313	91.37	91.305	-0.056	0.008	0.065
TLS	ZT (m)	-0.259	-0.251	-0.751	-0.008	<mark>0.491</mark>	<mark>0.500</mark>
scan4	Scale	1	1	1	0	0	(
	$\Omega(^{\circ})$ T1		•	1.1		11	<mark>0.512</mark>
	<u>φ(°)</u>	ie icpp	1S possi	ble only	v atter a	adding	0.156
	κ(°)			~	.1		-0.09
PRD	XT (n	more sc	ans to 11	icrease 1	the ove	erlap	-0.089
	YT (n					P	-0.025
	ZT (n	nerce	-0.001				
	Scale	perce	0				
	$\Omega(^{\mathrm{o}})$	-	30.584	31.338	-	-	<mark>-0.75</mark> 4
	-		74 546	74 272		_	-0.174
	φ(°)	-	- /4.546	=/4.372			0.11

Conclusions & Recommendations

- Commonly used registration methods cannot align TLS scans with minimal overlap area.
- The proposed registration method depends on derived planar and linear features from a photogrammetric model to register TLS scans with minimal overlap.
- Qualitative and quantitative QC procedures proved the feasibility of the proposed approach.
- Planar feature-based registration is quite reliable.
- Linear feature-based registration will have problems when the TLS features are not visible in the image data.
- Current & future work:
 - Automated feature extraction from imagery (Dense Matching Algorithms)

– Use airborne datasets for the registration of TLS data Laser Scanning

References

- Al-Durgham, K., & Habib, A. (2014). Association-Matrix-Based Sample Consensus Approach for Automated Registration of Terrestrial Laser Scans Using Linear Features. *Photogrammetric Engineering & Remote Sensing*,80(11), 1029-1039.
- Al-Durgham, K., Habib, A., & Mazaheri, M. (2014, March). Solution frequency-based procedure for automated registration of terrestrial laser scans using linear features. In *Proceedings of the ASPRS 2014 Annual Conference, Louisville, Kentucky* (pp. 23-28).
- Al-Durgham, M. M. (2007, September). Alternative methodologies for the quality control of lidar systems. In *Masters Abstracts International* (Vol. 46, No. 03).
- Al-Durgham, M., Detchev, I., & Habib, A. (2011). Analysis of two triangle-based multi-surface registration algorithms of irregular point clouds. *ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, *3812*, 61-66.
- Besl, P. J., & McKay, N. D. (1992, April). Method for registration of 3-D shapes. In *Robotics-DL tentative* (pp. 586-606). International Society for Optics and Photonics.
- Canaz, S., & Habib, A. (2014). Photogrammetric features for the registration of terrestrial laser scans with minimum overlap. *Journal of Geodesy* and *Geoinformation*, 2(1).
- Chen, Y., & Medioni, G. (1991, April). Object modeling by registration of multiple range images. In *Robotics and Automation, 1991. Proceedings.,* 1991 IEEE International Conference on (pp. 2724-2729). IEEE.
- Csanyi, N., & Toth, C. K. (2007). Improvement of lidar data accuracy using lidar-specific ground targets. *Photogrammetric Engineering & Remote Sensing*, 73(4), 385-396.
- Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. *Communications of the ACM*, 24(6), 381-395.
- Habib, A., Kersting, A. P., Bang, K. I., & Lee, D. (2010). Alternative methodologies for the internal quality control of parallel LiDAR strips. *Geoscience and Remote Sensing, IEEE Transactions on*, 48(1), 221-236.
- Habib, A. F., & Alruzouq, R. I. (2004). Line-based modified iterated Hough transform for automatic registration of multi-source imagery. *The Photogrammetric Record*, *19*(105), 5-21.
- Horn, B. K. (1987). Closed-form solution of absolute orientation using unit quaternions. JOSA A, 4(4), 629-642.
- Jaw, J. J., & Chuang, T. Y. (2008). Registration of ground-based LiDAR point clouds by means of 3D line features. *Journal of the Chinese Institute of Engineers*, *31*(6), 1031-1045.
- Lari, Z., & Habib, A. (2014). An adaptive approach for the segmentation and extraction of planar and linear/cylindrical features from laser scanning data. *ISPRS Journal of Photogrammetry and Remote Sensing*, *93*, 192-212.
- Renaudin, E., Habib, A., & Kersting, A. P. (2011). Featured-based Registration of terrestrial laser scans with minimum overlap using photogrammetric data.*ETRI Journal*, 33(4), 517-527.
- Yao, J., Ruggeri, M. R., Taddei, P., & Sequeira, V. (2010). Automatic scan registration using 3D linear and planar features. 3D Research, 1(3), 1-18.

Laser Scanning