Ph.D. Defense Abstract

Environmental Photochemistry of Aqueous Buckminsterfullerene (C₆₀) Clusters Wen-Che Hou

Major advisor: Chad T. Jafvert

Area: Environmental Engineering

Because large scale application of buckminsterfullerene C_{60} in commercial products has nearly come to realization, it is anticipated that significant quantities of C_{60} will reach the natural environment over the next decades. Therefore, it is imperative to understand its persistence, fate, and potential health impacts in the environment. To address part of this knowledge gap, this study has examined a potentially significant environmental fate process - photochemical transformation of aqueous C_{60} nanoparticles (nC_{60}). Stable nC_{60} suspensions form upon mixing C_{60} with water, and may be an important route for C_{60} to enter the environment.

In this study, nC_{60} was observed to phototransform with a half-life of approximately 1 day under continuous fall sunlight (West Lafayette, IN, 86°55' W, 40°26' N). The loss of C_{60} from the aqueous suspension occurred concurrent with the loss of the yellow-brownish color of parent nC_{60} and the decrease in the nanoparticle size. The lost C_{60} occurred with accumulation of soluble photoproducts in the aqueous phase. The phototransformation kinetics in sunlight was dependent on the cluster size, but was independent of pH (3-11), the presence of Suwannee River fulvic acid (10 mg/L), or preparation method (THF/ nC_{60} versus SON/ nC_{60}).

In contrast to reports showing no 1O_2 formation during short-term irradiations (< 2 h) under similar conditions, the results of this study indicate that 1O_2 forms upon irradiation of nC₆₀ (> 15 h), using furfuryl alcohol (FFA) as a reactive 1O_2 scavenger. Further, 1O_2 generation was more pronounced after soluble photoproducts had accumulated in solution. Removing O_2 completely quenched the losses of FFA and C_{60} , indicating nC₆₀ phototransformation requires 1O_2 in accordance with the phototransformation mechanism reported for molecular C_{60} in organic solvents. Additional evidence for 1O_2 as a reactive intermediate is that reactions in D_2O or in the presence of azide ion accelerated or slowed 1O_2 formation, respectively. In summer sunlight, reaction rates indicate that 1O_2 concentration occurring during photolysis of nC₆₀ is approximately 1 order of magnitude higher than the average value typically found in natural waters containing an equivalent amount of natural organic carbon.

Light within the visible portion of the solar spectrum ($\lambda \ge 400$ nm) was shown to be sufficient for nC₆₀ phototransformation and $^{1}O_{2}$ production. Under monochromatic light

at either 366 or 435 nm, the apparent quantum yields were 1.48×10^{-5} and 2.95×10^{-5} , respectively, again indicating the visible light is sufficient for transformation. Characterization of the photoproducts by XPS, FTIR and 13 C-NMR methods collectively reveal the occurrence of multiple oxygen-containing functionalities on the remaining carbon molecules, with analysis by LDI-TOF mass spectrometry indicating that most of the material retains its original 60-carbon structure.