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Abstract

Freight trucks are an important component of the nation�s highway traffic. Due to their physical and

operational characteristics, they can significantly impact traffic system performance, safety, and the travel

experience of non-truck drivers. Methodological gaps exist in the literature on modeling car–truck interac-

tions that do not result in crashes, especially those resulting from non-truck driver behavior. This paper

focuses on the modeling of the behavior of non-truck drivers in the vicinity of trucks to capture these inter-

actions. This is done by quantifying a time-dependent ‘‘discomfort level’’ for every non-truck driver inter-

acting with trucks in the ambient traffic stream. The driver socioeconomic characteristics and situational
factors that affect this discomfort are identified through a stated preference survey of non-truck drivers

and a preliminary analysis of the survey data using a discrete choice model. A fuzzy logic based approach

is proposed to determine the en-route time-dependent non-truck driver discomfort level. This is used in con-

junction with the car-following and lane-changing logics of a traditional traffic flow model to generate a

truck-following model and a modified lane-changing model in the vicinity of trucks. An agent-based free-

way segment traffic flow simulator is constructed using the extended microscopic flow modeling logic. It

provides a simulation-based framework to analyze alternative strategies to mitigate car–truck interactions.
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Experiments are conducted to analyze the sensitivity of the discomfort level to the causal variables, and

evaluate the effectiveness of alternative mitigation strategies.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Freight trucks represent a key element of the nation�s economy. Truck transportation is the
most frequently used mode for freight movement in terms of both shipment value and weight.
According to the Bureau of Transportation Statistics (2002), commercial truck traffic increased
75% over the past three decades, and this trend is likely to continue over the next 10 years. How-
ever, trucks also contribute disproportionately to traffic congestion, infrastructure deterioration,
and crashes due to their physical and operational characteristics such as size, weight, braking dis-
tance, blind spots, turning radii, and driver fatigue. Quantifiable measures can be used to infer on
the influence of trucks on traffic safety and pavement infrastructure deterioration. In addition, the
impacts of truck operational characteristics (limits on acceleration, deceleration, and speed) on
traffic performance can be robustly identified. However, traffic performance can also be affected
by the behavior of truck drivers and non-truck drivers. Truck driver behavior is influenced by the
presence of large blind spots (also labeled the no-zone) and the constraints introduced by road
geometry. Non-truck driver behavior is affected by the truck physical and operational character-
istics, and further, raises quality-of-travel issues for these drivers. These behavior-based influ-
ences, which can significantly affect traffic performance, are ignored or cursorily acknowledged
in the existing traffic flow modeling literature. They are difficult to model as they involve eliciting
latent driver behavioral tendencies which can be dynamically influenced by situational factors
such as time-of-day, weather, and ambient traffic congestion. A related factor that contributes
substantially to the modeling intractability is the need for difficult-to-measure behavioral data.
In this study, we propose a fuzzy logic based modeling framework to capture car–truck interac-
tions from a non-truck driver perspective using measurable variables. This is done by introducing
the notion of ‘‘discomfort’’ in the vicinity of trucks, and using it to extend existing microscopic
traffic flow modeling logic. It provides some generic methodological tools and modeling compo-
nents for the next-generation of traffic simulation models that need to incorporate increased real-
ism in modeling traffic flow (NGSIM, 2001).

Here, car–truck interactions are viewed as the driving actions of non-truck drivers due to psy-
chological discomfort in the vicinity of trucks. The term ‘‘truck’’ is used to denote conventional
combination trucks used for freight transportation, typically called ‘‘eighteen-wheelers’’. Also, the
terms ‘‘car’’ and ‘‘non-truck’’ are used interchangeably. There is a rich body of literature on safety
issues involving trucks (FHWA, 2000; Kostyniuk et al., 2002; NHTSA, 1998; Stuster, 1999).
These studies mostly focus on the analyses of crash data or on models to understand key causal
factors vis-à-vis crashes. However, the existing literature does not address the modeling of traffic
flow interactions between trucks and other vehicles arising from a driver behavior perspective,
especially those that do not lead to crashes. Such a capability is essential for analyzing strategies
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to mitigate car–truck interactions, which further influence traffic performance, safety, and the tra-
vel experience of non-truck drivers.

From a driver behavior standpoint, existing traffic flow models do not differentiate between
trucks and other vehicles on the road. As a consequence, the behavior of drivers for car–truck
interactions is modeled no differently from that of car–car interactions, and this fallacy is reflected
in the associated simulation and/or analytical models. However, a past study (Yoo and Green,
1999) using a driving simulator suggests that the headway when following a truck is wider than
the headway when following a car. Beyond the flow modeling limitations, other studies (Peeta
et al., 2000) suggest that truck drivers and non-truck drivers can react differently to the routing
information provided through an advanced information system. These behavioral differences
highlight the need to address the existing methodological gaps.

In summary, while it may seem that the deterministic tweaking of a parameter in existing traf-
fic flow/simulation models may suffice to capture the differential behavior of non-truck drivers in
the vicinity of trucks by modifying the associated headway, it is nonetheless true that such
behavior is the net effect of several factors some of which are random and others which are spe-
cific to an individual. This is because the behavior of drivers varies across them, and is based on
several factors ranging from the socioeconomic characteristics to the situational factors. So, just
tweaking an existing model parameter is inadequate from a behavioral perspective. We propose
a new parameter called driver discomfort level to incorporate the various factors that affect indi-
vidual driver actions/interactions in this regard. Further, it is important to characterize the ef-
fects of these interactions at a system level to address real-world problems. For example, in
Indiana, drivers in some areas have complained about driving discomfort due to the presence
of high fractions of trucks. Hence, there is a need to benchmark alternative mitigation strategies
from the perspective of driver discomfort in addition to system performance and safety. Finally,
we seek to propose a methodological framework that is more general in its scope than just the
car–truck interactions problem, and can be used to model other behavioral phenomena in the
traffic driver context that have either been ignored or represented inadequately in the existing
literature (NGSIM, 2001).

This paper aims to provide a measurable definition of car–truck interactions, identify the causal
factors, develop a methodological framework to model these interactions, and enable the evalu-
ation of alternative strategies to mitigate them. The first objective is to provide a qualitative def-
inition for car–truck interactions so as to analyze the causal factors and enable the development of
modeling capabilities to derive insights on them. This entails the robust modeling of non-truck
driver behavior under the influence of truck physical/operational characteristics. Existing ap-
proaches lack mechanisms to capture these behavioral impacts. For example, the Highway Capac-
ity Manual (TRB, 2000) adopts the notion of ‘‘passenger car equivalents’’ to estimate level of
service by converting a truck into a proportional number of passenger cars to capture its physical
characteristics.

The second objective is to develop behavioral models for non-truck drivers by seeking to cap-
ture their psychological discomfort in the vicinity of trucks. Past studies (Stuster, 1999; Kostyniuk
et al., 2002) suggest that the presence of trucks can significantly impact the driving actions of non-
truck drivers, and that these impacts are key causal factors for car–truck crashes. However, these
studies focus primarily on driver actions that lead to crashes rather than explicitly addressing non-
crash related interactions. This paper associates ‘‘discomfort levels’’ with non-truck drivers to
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capture such interactions. A fuzzy logic approach is used to link the non-truck driver character-
istics and situational factors with the discomfort drivers feel in vicinity of trucks.

The third objective of this study is to develop truck-related interaction components for micro-
scopic traffic flow models. Existing traffic flow models do not account for car–truck interactions.
To the extent that these interactions are manifest at the individual driver level, we extend an exist-
ing microscopic flow model to incorporate these interactions by developing truck-following and
modified lane-changing models. The extended modeling logic is used to construct an agent-based
freeway segment traffic flow simulator.

The fourth study objective is to evaluate alternative strategies to mitigate car–truck interactions
using the agent-based simulation (ABS) platform. Some existing studies in the literature analyze
truck-related traffic strategies. Garber and Gadiraju (1991) use simulation to evaluate the effects
of several truck strategies on traffic flow and safety on multilane highways. Grenzeback et al.
(1991) investigate the effects of large trucks on peak-period urban freeway congestion. However,
while these studies consider truck operational characteristics, they do not incorporate car–truck
interactions due to the limitations of existing simulation models.

A comprehensive review of the literature relevant to the study problem can be found in Zhou
(2003). This paper is organized as follows. Section 2 discusses the methodology to quantify car
truck interactions through non-truck driver discomfort. Section 3 describes the extensions to
an existing microscopic traffic flow model to incorporate these interactions. Section 4 discusses
the application of the study methodology to a case study involving the Borman expressway
(I-80/94) in northwest Indiana. Section 5 discusses sensitivity analyses for the models developed
and evaluates alternative strategies to mitigate car–truck interactions for the case study using sim-
ulation experiments. Section 6 provides some concluding comments.
2. Methodology to model non-truck driver discomfort level

2.1. Modeling car–truck interactions using driver discomfort levels

Car–truck interactions are defined in this study as the driving actions of non-truck drivers aris-
ing from their discomfort in the vicinity of trucks, primarily due to truck physical/operational
characteristics. While interactions can also arise from the truck driver perspective, they tend to
be less significant behaviorally as cars are smaller in size and have better operational characteris-
tics. We postulate that the non-truck driver discomfort level (DL) is a quantifiable measure of the
associated discomfort, and that it varies across drivers based on their socioeconomic characteris-
tics, past experience, and inherent behavioral tendencies. Also, the DL is time-dependent as it is
influenced by situational factors such as weather, time-of-day and ambient traffic conditions. The
level of discomfort is revealed through the driving actions in terms of truck-following and asso-
ciated lane-changing behaviors.

The proposed definition of car–truck interactions suggests that when a non-truck driver follows
a truck, there may be varying degrees of discomfort. This implies that different drivers in the same
traffic stream may have different DLs due to differences in their behavioral tendencies. By con-
trast, drivers with similar socioeconomic characteristics may have different DLs if their situational
factors are different. Further, when a non-truck driver follows a truck, there may be no discomfort
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if the space/time headway between them is sufficiently large that the non-truck driver does not feel
the discomfort. From a traffic flow modeling perspective, this implies that the truck-following
behavior is not triggered. This is akin to the logic of traditional car-following models where
car-following behavior is not triggered unless the headway is below a threshold value. Based
on the recommended safe time gap in the Indiana Driver License Manual, we assume that if
the two vehicles are at least two seconds apart, they are sufficiently far from each other that
the non-truck driver actions are not influenced by the truck ahead. However, the study method-
ology is independent of the threshold time gap used.

2.2. Methodological framework to determine driver discomfort level

Fig. 1 illustrates the methodological framework used to determine the discomfort levels of driv-
ers. A non-truck driver behavior survey is conducted in the region of interest to identify factors
Data Collection
Conduct a stated preference  
survey of non-truck drivers  

Preliminary Analysis  
Identify significant factors using a 

discrete choice model  

Significant causal variables  

Identify region of interest  

Non-truck Driver Behavior Modeling  
Fuzzy logic model to determine non-truck 

driver discomfort level  

Discomfort level for individual 
driver in the ambient traffic stream  

 

Modification of Traffic Flow Modeling Logic  
Extended microscopic traffic flow modeling 

with truck-following logic and associated 
modified lane-changing logic 

Fig. 1. Conceptual framework to determine driver discomfort level.



422 S. Peeta et al. / Transportation Research Part B 39 (2005) 417–451
that contribute to driver DL. A preliminary analysis of the survey data is performed using discrete
choice modeling to identify potential significant factors to generate if–then rules for the fuzzy logic
modeling approach used. The fuzzy model is used to determine the time-dependent DL for each
non-truck driver. The DL is used in conjunction with the car-following logic of a microscopic traf-
fic flow model to obtain a truck-following model. In addition, it is used to modify the associated
lane-changing logic. This leads to an extended microscopic traffic flow model that can analyze
car–truck interactions. This framework is adopted in Section 5 to evaluate the effectiveness of
alternative car–truck interaction mitigation strategies.

2.2.1. Data collection: non-truck driver behavior survey

As stated earlier, a key objective of this study is to interpret driver DL using measurable var-
iables. Ideally, it is desirable to obtain data based on the revealed actions of drivers in actual
situations or in a quasi-revealed manner through driving simulators. However, it is difficult
to measure the manifestations of driver actions using existing sensor technologies. Further,
even if it were possible to do so, it would be highly labor intensive and economically prohibi-
tive. Hence, the non-truck driver discomfort when following a truck cannot be measured
trivially.

In this study, the factors that contribute to non-truck driver discomfort are categorized into
socioeconomic characteristics, behavioral tendencies and situational factors. The socioeconomic
variables consist of age, gender, education, household size, and frequency of freeway usage.
The situational factors include bad weather (rain, snow), night driving, and three levels of traffic
congestion (low, medium, and high). The socioeconomic variables are primarily static, unlike sit-
uational factors which are time-dependent. However, the behavioral tendencies of drivers are la-
tent variables and cannot be measured directly. Hence, the discomfort characteristics of each
survey respondent are inferred using a stated preference (SP) survey that seeks potential driver
actions in hypothetical scenarios. As is well-known in the literature, the SP data may not be con-
sistent with a driver�s revealed actions. However, it provides a consistent basis to build logical if–
then rules in the proposed fuzzy logic approach.

An on-site SP survey of non-truck drivers is conducted (Zhou, 2003). The first group of ques-
tions identifies the socioeconomic characteristics of the respondents. The second set of questions
relate to discomfort under various situational factors. To obtain detailed insights, respondents are
asked to convey their degree of discomfort using a Likert scale (where 1 represents no discomfort
and 5 represents the most discomfort) when following a truck. The last set of questions is oriented
towards eliciting driver behavior and actions vis-à-vis discomfort in the vicinity of trucks. It seeks
specific information about driver actions when following a truck or a non-truck. This is used to
infer on the difference in driving actions when following trucks.

2.2.2. Fuzzy logic modeling approach

A fuzzy logic based approach is adopted to model the non-truck driver DL by combining the
contributions of the significant attributes. It is a robust mechanism for this problem due to the
subjectivity in characterizing driver discomfort and some causal factors. A few existing studies
use fuzzy logic modeling in related areas: Gonzalez-Rojo et al. (2002) use a fuzzy logic approach
to model car-following to estimate the parameters in the associated equations, and Wu et al.
(2000) develop a microscopic simulation model using fuzzy logic.
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The significant explanatory variables for the driver DL are identified using a preliminary anal-
ysis of survey data, as discussed in Section 4.2. Based on this, the structure of the fuzzy logic based
DL model in this study can be expressed as:
DLk;t ¼w1XGðXG
k Þþw2XAðXA

k Þþw3XEðXE
k Þþw4XHðXH

k Þþw5XW ðZW
t Þþw6XT ðZT

t Þþw7XCðZC
t Þ
ð1Þ
where DLk,t is the discomfort level for non-truck driver k in interval t; X l
k is the value of socioe-

conomic variable l for driver k; Zm
t is the value of situational factor m in interval t; and wj is the

weight associated with attribute j. The X( Æ ) represent the fuzzy logic approach based transforma-
tion functions to determine the crisp values corresponding to the specific explanatory variable rep-
resented by the subscript. They are: gender (G), age (A), education (E), household size (H),
weather (W), time-of-day (T), and congestion level (C).

The fuzzy logic procedure to obtain the crisp values using the transformation functions consists
of the following steps: (i) construction of if–then rules, (ii) construction of membership functions,
(iii) application of the implication operator, (iv) defuzzification, and (v) adjustment of the weights
of if–then rules. We use the ‘‘education’’ variable to illustrate these steps.

If–then rules. A non-truck driver�s discomfort to trucks is assumed to be based on some simple
rules. Natural language is perhaps the most powerful form of conveying information that humans
possess for any problem or situation that requires reasoning (Peeta and Yu, 2002). Also, in the
field of artificial intelligence, a common mechanism to represent human knowledge is to form
it into natural language expressions of if–then rules, such as:

IF premise (antecedent), THEN conclusion (consequent).

This is commonly known as the if–then rule form. Consistent with this approach, the driver DL to
trucks is assumed to be based on a set of rules that relate it to the driver socioeconomic charac-
teristics and situational factors. The rules are based on the variables identified as significant in the
survey data analysis and/or those identified based on the insights from previous studies in the re-
lated driver behavioral domain.

For generality, a rule i is defined in the form of ‘‘if x is Ai then y is Bi’’. The left hand side (LHS)
of a rule deals with driver characteristics and situational factors, while the right hand side (RHS)
represents the degree of discomfort to trucks. For example, ‘‘if the driver is well-educated, the
discomfort is high’’ is one rule related to education that is used in the study. Here, x represents
education, a relevant characteristic for the driver. Ai represents the fuzzy set of the term ‘‘well-
educated’’. y represents discomfort, and Bi represents the fuzzy set of the term ‘‘discomfort is
high’’. However, the description of the education factor for a specific driver may not completely
match the associated rule. The fuzzy logic approach is a tool to account for such linguistic sub-
jectivity in describing the driver characteristics. For example, if the education variable input for a
driver is ‘‘some college’’ based on the survey, it does not directly match the if–then rule: ‘‘if the
driver is well-educated, then the discomfort is high’’. Nor does it completely match the rule: ‘‘if
the driver is less-educated, the discomfort is low’’. Hence, there is a need to determine to what
extent each of these two rules corresponds to ‘‘some college’’. This is done through a procedure
known as ‘‘implication’’. Hence, the if–then rule matching can be described as follows. If an actual
input and the LHS of rule i are approximately matched, a consequence may be inferred as follows:
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If x is Ai
 then y is Bi
 ! Generic if–then rule

x is A�

i
 ! Input value for driver
y is B�
i
 ! Implication value for driver
Here, everything above the line is known, and below the line is unknown. For example, the gen-
eric ‘‘education’’ rules described above are known, and a specific driver�s education ‘‘some
college’’ is the input which represents A�

i . The implication value of B�
i is computed based on the

composition of A�
i and an implication relation R for each of the two ‘‘education’’ rules.

An aggregation mechanism is used to combine the implication values for all ‘‘education’’ rules
into one fuzzy set based on the input for the driver, ‘‘some college’’. This output fuzzy set is then
transformed into a crisp value through a process called defuzzification. This crisp fuzzy value
would represent the XEðXE

k Þ value for driver k in Eq. (1). The procedure is repeated for the other
variables in Eq. (1).

The construction of the if–then rules is the most critical step in the fuzzy logic approach. These
rules are then translated into a graphical form, called membership functions, for enabling the
remainder of the fuzzy logic approach.

Membership functions. The membership function of a fuzzy variable maps the fuzzy variable
values to the set [0,1], indicating the possibility of each variable value. The possibility is a func-
tion that takes values between 0 and 1 indicating the degree of evidence or belief that a certain
element belongs to a set. It is a mathematical representation of linguistic information. It focuses
on the imprecision intrinsic in language and quantifies the meaning of events (Peeta and Yu,
2002). Typically, the shapes of the membership functions are triangular and trapezoidal, and
are governed by analytical convenience. In our study, these shapes are used consistent with
the survey data.

We use the ‘‘education’’ variable example to illustrate the construction of the membership
functions. Fig. 2 illustrates the membership functions for ‘‘less-educated’’ and ‘‘well-educated’’
categories. In the study survey, there are four categories specified for education: high school or
less, some college, college graduate, and postgraduate. They are represented by 1, 2, 3, and 4,
respectively in Fig. 2. In the membership function for well-educated, ‘‘postgraduate’’ is identi-
fied as ‘‘well-educated’’ with possibility 1, and ‘‘high school or less’’ is identified as ‘‘well-edu-
cated’’ with possibility 0. Similarly, the membership function for less-educated has a possibility
0 if the driver response is ‘‘college graduate’’ or ‘‘postgraduate’’ as both of these are generally
not considered as ‘‘less-educated’’. Using similar reasoning, the membership functions for ‘‘low
discomfort’’ and ‘‘high discomfort’’ are constructed, as shown in Fig. 2. As will be discussed
later, the membership functions are constructed through intuitive reasoning as well as
survey data. The approach is to tweak these functions so that the weights of the attributes
in Eq. (1) reflect their significance to explaining driver discomfort consistent with the survey
data.

Implication operator. As discussed earlier, the inferred value of B�
i is computed based on the

input of A�
i and an implication relation R. The relation can be represented as follows:
B�
i ¼ A�

i � R ð2Þ
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Fig. 2. Determination of membership functions.
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where R is the implication relation from Ai to Bi. Several implication operators can be used to
infer B�

i . We use the Larsen Product implication operator (Peeta and Yu, 2002), defined as:
lB�
i
ðyÞ ¼ ci � lBi

ðyÞ ð3Þ
where ci is the degree of overlap between Ai and A�
i , and is given by:
ci ¼ max
x2X

minðlA�
i
ðxÞ;lAi

ðxÞÞ ð4Þ
where X is the overlap between Ai and A�
i . B

�
i , the fuzzy set representing the discomfort based on

the input A�
i , can be obtained using this implication operation, as shown in Fig. 3. The member-

ship function (lA�
i
ðxÞ) of input A�

i has overlap with the membership function (lAi
ðxÞ). From this, ci
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can be obtained as the highest value of the overlap, as expressed in Eq. (4). Then, Eq. (3) is used to
imply the membership function of B�

i using the known Bi membership function.
Defuzzification method. After using the implication operator to determine the fuzzy set B�

i for if–
then rule i, the process is repeated for all if–then rules that are fired based on the rule category. As
shown in Fig. 3, for the ‘‘education’’ variable and driver input ‘‘some college’’, both rules in the
education category are fired. They generate fuzzy sets B�

1 and B�
2. Defuzzification is the mechanism

to transform these fuzzy outputs to a crisp value. This is done by using a defuzzification method
to process the aggregated output B�, which is the union of B�

1 and B�
2 in Fig. 3. The center of sums

(COS) method is used to defuzzify the fuzzy output B�. The COS seeks to find the center of B�,
and is obtained as:
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y� ¼
R
Y y �

Pn
i¼1lBi

ðyÞdyR
Y

Pn
i¼1lBi

ðyÞdy ð5Þ
where Y is the range of discomfort levels (1–5), n is the number of rules in the category, lBi
(y) is

the possibility value of y in fuzzy set Bi, and y� is the crisp value from defuzzification. Hence, the
fuzzy transformation function output in Eq. (1) specifies a crisp value for the corresponding cat-
egory. For example, for education, we have:
XEðXE
k Þ ¼ y�Ek ð6Þ
where XE
k is ‘‘some college’’ for driver k, and y�Ek is the crisp value for driver k. Based on this ap-

proach, seven crisp values are generated for the seven explanatory variables for driver k in Eq. (1).
Adjustment of the weights of if–then rules. The final step is to determine the weights of the at-

tribute categories in Eq. (1). These weights reflect the importance of each attribute category (such
as education, gender, time-of-day etc.) in contributing to the DL value. The DLk,t is computed by
obtaining the crisp values for each fuzzy explanatory variable (attribute). Each attribute is repre-
sented as a set of if–then rules. To determine the DLk,t, the contribution (weight) of each attribute
to it is necessary. This implies that some attributes (and their associated if–then rules) may be
more important than others in determining the DL value. As shown in Eq. (1), the DL for driver
k and in interval t can be represented as:
DLk;t ¼
XNA

j¼1

wjy
�j
k ð7Þ
where NA is the number of attributes. The weights of the attributes are determined using the sur-
vey data as it provides the stated DL values for different situations for each respondent k. The y�jk
values are computed using the fuzzy logic approach discussed heretofore. To determine the
weights wj, (N + NA + 1) simultaneous equations are solved, where N is the number of observa-
tions from the SP survey. The additional constraints are due to the normalization requirementPNA

j¼1wj ¼ 1, and NA non-negativity constraints wj P 0. After the wj values are determined, Eq.
(1) can be used to predict the DL value for a specific driver.

2.3. Computation of the AADL

The DL is a disaggregate parameter specific to an individual driver. However, it is not sufficient
to analyze mitigation strategies. This motivates the need for an aggregate measure of the degree of
car–truck interactions for a roadway segment. We define the average aggregate discomfort level
(AADL) for a roadway segment in this context. It is the time-averaged aggregated sum of the dis-
comfort levels of all drivers on a roadway segment for a pre-specified duration averaged over all
vehicles. From a practical standpoint, a higher AADL value implies a greater degree of car–truck
interactions, and vice versa. Hence, the AADL provides a convenient quantifiable tool to evaluate
alternative mitigation strategies.

The DL values are obtained from the fuzzy logic approach. The 2-s threshold discussed in Sec-
tion 2.1 is used to determine whether a non-truck vehicle following a truck interacts with it. Based
on this data, the AADL for time interval t is computed as:
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AADLðtÞ ¼
PNðtÞ

k¼1nk;t �DLk;t

NðtÞ ð8Þ
where N(t) is the number of non-truck vehicles on the roadway segment of interest during interval
t, and:
nk;t ¼
1; if k has interaction with truck ahead in interval t

0; if k does not have interaction with truck ahead in interval t

�

AADL(t) represents the average degree of car–truck interactions over the entire roadway segment
for interval t. For evaluating car–truck interactions mitigation strategies, it is more meaningful to
obtain the average of the AADL(t) values over a pre-specified time duration. This average
aggregate discomfort level averaged over s time intervals is denoted by AADLs, and is expressed
as:
AADLs ¼
Ps

t¼1AADLðtÞ
s

ð9Þ
The AADLs is the primary performance measure used to evaluate the mitigation strategies.
3. Extending traffic flow modeling logic to incorporate car–truck interactions

We extend existing microscopic flow modeling components to incorporate car–truck interac-
tions through the DL variable. The strategic goal is to provide a realistic generic modeling com-
ponent vis-à-vis car–truck interactions for the next-generation of traffic simulation models. In the
interim, the car-following and lane-changing logics in the FRESIM freeway traffic flow simulator
(Halati et al., 1991) are extended to obtain truck-following and modified lane-changing logics.
FRESIM is part of the CORSIM corridor simulation model (Owen et al., 2000) developed by
the FHWA. It is chosen as the base model based on the insights from a previous study (Aycin
and Benekohal, 1999) which compares several popular car-following models. It concludes that
the FRESIM car-following model more closely replicates the field data compared to other models
when the driver sensitivity factors are robustly calibrated. However, FRESIM is not as robust
under stop-and-go traffic conditions.

The car–truck interaction modeling in this study is applicable to freeways only, though the pro-
posed methodological framework is not restricted to just the freeway domain. While such models
can be developed for the non-freeway context as well, their significance in the context of mitiga-
tion strategies is not as apparent. This is because strategies such as lane restrictions to reduce car–
truck interactions are not as meaningful for arterial streets when trucks have to use specific routes
to reach their destinations. In such instances, road geometry constraints would likely represent the
primary factors affecting traffic performance rather than car–truck interactions. For implementing
the proposed framework in Section 5, an agent-based traffic flow simulator for freeway segments
is constructed using the modified FRESIM modeling logic.

We now briefly describe the car-following and lane-changing models embedded in FRESIM,
and their extensions to incorporate car–truck interactions.
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3.1. Truck-following model

The FRESIM car-following model updates vehicles sequentially in the simulation using its lea-
der–follower logic. First, the leader is moved to its new position and then the follower is placed at
a position consistent with the car-following logic. That is, the follower vehicle�s speed and position
are determined after updating its leader�s position for the current time step. The Pitts car-follow-
ing model is used for this purpose (Halati et al., 1991):
H ¼ Lþ 10þ qvt þ bqðut � vtÞ2 ð10Þ

whereH is the space headway (ft) between leader and follower, L is the lead vehicle length (ft), q is
the driver sensitivity factor for the follower vehicle, vt is the speed of the follower vehicle at time t
(fps), ut is the speed of the lead vehicle at time t (fps), and b is a calibration constant defined as:
b ¼
0:1; ut < vt
0; otherwise

�

Based on Eq. (10), the follower vehicle acceleration for simulation scanning interval d is deter-
mined as:
a ¼ 2fxtþd � yt � L� 10� vðqþ dÞ � bqðutþd � vtÞ2g
d2 þ 2qd

ð11Þ
where xt + d is lead vehicle position at time t + d, yt is the follower vehicle position at time t, and q
is the driver sensitivity factor for the follower vehicle.

As discussed in Section 1, Yoo and Green (1999) conclude that the headway when following a
car is lower than when following a truck. To reflect the greater spacing when the vehicle ahead is a
truck, Eq. (10) is extended by including a term to represent the additional contribution due to the
discomfort of the following driver with respect to a truck ahead. This leads to the truck-following
model:
H ¼ Lþ 10þ qvt þ bqðut � vtÞ2 þ b� ðDL� 1Þ ð12Þ

and the follower vehicle acceleration:
a ¼ 2fxtþd � yt � L� 10� vðqþ dÞ � bqðutþd � vtÞ2 � b� ðDL� 1Þg
d2 þ 2qd

ð13Þ
where b is the coefficient for the discomfort level term. In Eqs. (12) and (13), the DL is subtracted
by one to ensure consistency between the definition of DL and its computation using the fuzzy
logic approach. The fuzzy logic model generates values between 1 and 5, where 1 represents no
discomfort. Since the discomfort level does not contribute to the headway when there is no dis-
comfort, DL is subtracted by 1 to ensure a consistent interpretation.

b reflects the relative contribution of the discomfort to the space headway. A lesser value for b
implies less conservative drivers in terms of the additional space that they would maintain with the
truck ahead, and vice versa. In the study experiments, b is assumed identical across all non-truck
drivers. Its calibration entails field data or a driving simulator. Due to the lack of either resource,
the driving simulator results from Yoo and Green (1999) are used to estimate b. In that study, the
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16 subjects followed cars about 10% closer than they did for trucks. The socioeconomic charac-
teristics of the subjects from that study were used to compute their DL values using our fuzzy
logic approach. The 10% increase in headway and the DL values were used to compute the bi
for each of the 16 drivers. An average of these individual bi values generated the b value of
8.15 for our study experiments.

3.2. Modified lane-changing model

The other important flow modeling component related to car–truck interactions is the lane-
changing behavior. The non-truck driver behavior survey suggests that drivers prefer to overtake
a truck ahead than a car ahead when all other conditions are identical. This implies that the desire
to perform a discretionary lane change is higher when following a truck. In FRESIM, discretion-
ary lane-changing refers to lane changes performed to bypass other slow-moving vehicles, to ob-
tain a more favorable position, and/or to attain a higher speed. Its discretionary lane change logic
quantifies the driver decision to perform the lane change based on the behavioral factors ‘‘moti-
vation’’ and ‘‘advantage’’.

Motivation refers to the desire (denoted in percentage units) to perform a discretionary lane
change. It is a function of a vehicle�s present speed and the driver�s behavioral characteristics.
The model assigns to each vehicle an ‘‘intolerable’’ speed level below which the driver is highly
motivated to perform the lane change. The ‘‘intolerable’’ speed (vint) is computed as:
vint ¼ vff
50þ 2c
100

� �
ð14Þ
where vint is the tolerance threshold speed for the lane changer, vff is the desired free-flow speed
(fps), and c is the driver type factor (a randomly assigned number between 1 and 10 with 10 rep-
resenting the most aggressive driver and 1 representing the most timid driver). The desire to per-
form a discretionary lane change (D) is then determined as:
D ¼

100; v6 vint

100 1� v� vint
vff � vint

� �
; vint < v < vff

0; vP vff

8>><
>>:

ð15Þ
where D is the desire to perform a discretionary lane change (%), and v is the speed of the lane
changer.

Once a driver has the desire to perform a lane change, the gaps on the adjacent lanes are eval-
uated (Halati et al., 1991). After confirming that a vehicle desires a lane change and the gaps on
other lanes permit it, the advantage gained by shifting to other lanes is computed to determine
whether such an advantage is significant enough for that driver. Advantage refers to the benefits
gained by performing the lane change. It is modeled in terms of the ‘‘lead factor’’ (Fl) representing
the disadvantage of remaining in the current lane, and the ‘‘putative factor’’ (Fp) which represents
the potential gain in moving to a new lane. The lead factor is computed in terms of the vehicle�s
current headway with respect to its current leader using:
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F l ¼

1; h6 hmin

1� h� hmin

hmax � hmin

; hmin < h < hmax

0; hP hmax

8>>><
>>>:

ð16Þ
where hmin is the minimum time headway, hmax is the maximum time headway, and h is the exist-
ing time headway in the current lane:
h ¼ s� F svd
v

where s is the separation distance between the vehicle and its leader in the current lane, Fs is the
speed threshold factor, and vd is the speed differential between the vehicle and its leader.

The algorithm for computing the putative factor is identical to that for the lead factor with the
exception of the headway computation, which is performed with respect to the putative leader in
the target lane. The ‘‘advantage’’ for discretionary lane change is computed as the difference be-
tween the putative factor and the lead factor. The lane change is permitted if this difference ex-
ceeds the advantage threshold which has a value of 0.4.

As discussed earlier, the non-truck driver behavior survey indicates that these drivers are more
willing to change lanes when they follow a truck. This implies that truck characteristics induce
non-truck followers to overtake the truck even if the truck is not slow enough to exceed the tol-
erance level of the follower. Based on this, the FRESIM lane-changing logic ‘‘desire’’ component
is modified. The desire (in %) to perform a discretionary lane change for non-truck drivers when
following a truck is then modeled as:
Dtruck ¼

100; v6 vint

min 100 1� v� vint
vff � vint

� �
þ x � ðDL� 1Þ

� �
; 100

� �
; vint < v < vff

x � ðDL� 1Þ � 100; vP vff

8>>><
>>>:

ð17Þ
where x is the desire coefficient associated with the discomfort level term. The DL is subtracted by
1 to ensure consistency with the lane-changing logic. The interpretation of coefficient x parallels
that of b for the truck-following model. In the study experiments, x is assumed to be identical for
all non-truck drivers. Its value can also be calibrated using field data or a driving simulator. We
assume a value 0.1 so that a driver with discomfort level 3 has a 20% probability of desiring to
change lanes even when the truck ahead travels at free-flow speed.
3.3. Implementation of the extended traffic flow modeling logic in a simulator

Fig. 4 illustrates the implementation of the extended traffic flow modeling logic in a simulation
framework to account for driver discomfort when following a truck. In this study, it is enabled by
developing an agent-based traffic simulator for freeway segments. As illustrated by the figure, at
each time step, each non-truck vehicle is examined to check whether it follows a truck. If it does
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Fig. 4. Implementation of the extended traffic flow modeling logic in a simulator.
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not follow a truck, the FRESIM car-following and lane-changing models are used to update its
speed and position. If the non-truck vehicle follows a truck, the truck-following model is used
to determine the space headway and acceleration rate. If the space gap is less than or equal to
a 2-s time gap, interaction is identified and the modified lane-changing logic is used. If the space
gap is greater than the 2-s time gap threshold, it is inferred that a car–truck interaction does not
exist. Then, the FRESIM lane-changing model is used to determine the desire to change lanes.
This procedure is repeated for all non-truck vehicles.
4. Case study

The study methodology is analyzed using simulation experiments for a case study involving the
Borman expressway in northwest Indiana. It includes the implementation of the non-truck driver
SP survey, the preliminary analysis of survey data, and construction of the fuzzy logic based DL
model.

The Borman expressway region consists of the Borman expressway which is a 16-mile segment
of I-80/94, the surrounding arterials, and nearby interstates, I-65 and I-90. The Borman express-
way has heavy truck traffic and represents an ideal testbed to analyze car–truck interactions. The
average daily traffic consists of over 140,000 vehicles, and truck traffic represents 30% of the total
volume during peak periods and up to 70% at nights. This makes the Borman expressway one of
the busiest commercial routes in the nation.
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4.1. Data collection and analysis

The non-truck driver behavior survey discussed in Section 2.2.1 consists of on-site responses
from 159 non-truck drivers in the Borman region. The socioeconomic characteristics of the survey
respondents are summarized in Table 1. The distribution of the respondents in terms of age
groups is not uniform as only about 28% of the respondents are less than 40 years old. The lower
percentage of younger drivers may reflect the traffic stream robustly; however if it does not, the
influence of age attribute can be skewed.

In terms of the situational factors, the survey results suggest that under normal conditions, the
inherent discomfort level to trucks tends to be relatively low, with most drivers choosing a DL
Table 1

Explanatory variables and survey respondent socioeconomic characteristics statistics

Explanatory variable Mnemonics Number of survey respondents (%)

Alternative specific constant ONE

Gender GEN

=1, if male 99 (62.3%)

=2, if female 60 (37.7%)

Age AGE

=1, if 6 20 3 (1.9%)

=2, if 21–30 19 (11.9%)

=3, if 31–40 23 (14.5%)

=4, if 41–50 34 (21.4%)

=5, if 51–64 49 (30.8%)

=6, if P 65 31 (19.5%)

Education EDU

=1, if high school or less 29 (18.2%)

=2, if some college 41 (25.8%)

=3, if college graduate 41 (25.8%)

=4, is postgraduate 48 (30.2%)

Household size HHS

=1 22 (13.8%)

=2 65 (40.9%)

=3 24 (15.1%)

P 4 48 (30.2%)

Freeway experience FRQ

=1, if very frequent user of freeways 48 (30.2%)

=2, if frequent user of freeways 77 (48.4%)

=3, if neutral user of freeways 21 (13.2%)

=4, if not frequent user of freeways 8 (5.0%)

=5, if seldom user of freeways 5 (3.2%)

Bad weather situation (dummy variable) WEA

Night driving situation (dummy variable) TOD

No congestion (dummy variable) NCO

Congested traffic with smooth flow (dummy variable) MCO

Congested traffic with stop-and-go situation

(dummy variable)

HCO
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value less than or equal to 3. However, the discomfort is pronounced for bad weather. The survey
results indicate that time-of-day may not be a significant factor, implying that night driving does
not change the relevant behavior. However, this may simply be an artifice of SP surveys. In terms
of congestion levels, the discomfort is the least when no congestion exists. For medium and high
congestion levels, the discomfort is higher, especially under medium congestion where speeds tend
to be higher.

Another set of survey questions seek to elicit driver behavior and actions in the vicinity of
trucks. They suggest that most drivers feel that they would keep a wider gap with a truck ahead,
and that drivers are more likely to pass a truck than a car. These form the premise for the truck-
following and modified lane-changing models in this study. The survey also seeks reasons for dri-
ver discomfort in the vicinity of trucks. The primary factors identified relate to the truck physical
dimensions: they block the line of sight for non-truck drivers and create blind spots for truck driv-
ers. This suggests that truck size tends to increase the uncertainty in perceiving the traffic ahead by
non-truck drivers, making them more cautious. It motivates our hypothesis of using driver dis-
comfort to reflect this cautiousness. A detailed description of the survey data characteristics is
provided in Zhou (2003).
4.2. Identification of significant variables

As discussed in Section 2.2, the driver DL is obtained using a fuzzy logic based approach. A key
step in this methodology is the construction of the if–then rules. This entails the identification of
significant explanatory variables for which these rules are constructed. This is done through a pre-
liminary analysis of the survey data using discrete choice modeling. To minimize computational
effort, a choice model with only two alternatives (low discomfort or high discomfort), the binary
logit model, is analyzed. The structure of the binary logit model estimated using the survey data
for driver k is:
ðV ik � V jkÞ ¼ a0 þ
X5

l¼1

alW l
k þ

X5

m¼1

cmY
m
k ð18Þ
where Vik is systematic component of the utility of choice i (low discomfort), Vjk is the systematic
component of the utility of choice j (high discomfort), a0 is the alternative specific constant, al is
coefficient for socioeconomic variable l, W l

k is the categorical value (shown in Table 1) of socio-
economic variable l, cm is the coefficient for situational variable m, and Y m

k is the dummy 0–1
explanatory variable for situational variable m. Based on the SP survey, the socioeconomic var-
iables considered are gender, age, education, household size, and frequency of freeway trips. The
dummy explanatory variables are considered for bad weather, night driving, low congestion, med-
ium congestion, and high congestion, respectively.

To enable consistency between the Likert scale (1–5) of the survey data for DLs and the binary
logit model, different combinations of the survey responses are considered to obtain the dependent
variable value for the model estimation. Based on the analysis, the following combination had the
best fit:
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ek ¼
low discomfort; if the stated DL6 3

high discomfort; if the stated DL ¼ 4 or 5

�
ð19Þ
That is, the grouping in which DLs 1, 2 and 3 were assumed to represent low discomfort, and DLs
4 and 5 represent high discomfort provided the best fit for the survey data. In general, this pro-
cedure should be applied to the specific case study to identify the best grouping of the DL values.

This model is used to estimate the significant factors vis-à-vis DL using the survey data. Of the
159 responses, 105 are used to estimate the model and the remaining are used for analyzing the
model prediction capabilities. The LIMDEP 7.0 software is used to estimate the coefficients in
Eq. (18).

Table 1 illustrates the variables used to estimate the binary logit models. All attributes are in-
cluded in the initial model procedure to estimate the coefficients using the survey data. However,
variables estimated to be insignificant in the initial model are omitted in the next stage. Based on
updated model, the estimation results of the binary logit model are shown in Table 2.

The alternative specific constant, ONE, has a positive value which implies that drivers choose
low discomfort to trucks when situational factors and socioeconomic characteristics are not con-
sidered. GEN and HHS are the two socioeconomic characteristics found to be significant in the
initial model, and are hence considered in this model. Gender has a negative coefficient implying
that females have more discomfort to trucks than males. The household size coefficient is positive
implying that drivers with larger families tend to have lower discomfort to trucks. This could pos-
sibly be because larger families tend to have more trips, reducing the discomfort levels for the
associated drivers. That is, more trips or experience in the vicinity of trucks may lead to the driver
being more comfortable.

WEA, TOD, NCO, MCO, and HCO are situational factors that are represented as dummy var-
iables in the model. Bad weather contributes significantly to an increase in driver discomfort as
illustrated by the negative sign and the level of significance for the variable WEA. Bad weather
has a tendency to inherently increase driving discomfort, irrespective of whether a vehicle is
2

logit model from non-truck driver behavior survey data

le Model coefficient (t-statistic)

1.731 (3.886)

�0.568 (�2.842)

0.313 (4.047)

�1.624 (�4.727)

�0.213 (�0.564)

�0.341 (0.821)

�0.519 (�1.425)

�0.882 (�2.500)

le size 630

�436.68

�310.67

0.289
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following a truck. However, trucks can splatter water, grime and dirt on the windshields of cars in
their vicinity under bad weather (rain, snow, etc.). This magnifies the effect of reduced sight for the
non-truck drivers, increasing their discomfort substantially.

The variable HCO is also significant and has a negative sign indicating that discomfort increase
with stop-and-go traffic. This could be because stop-and-go traffic corresponds to the unstable
traffic regime and entails inherent uncertainty in driving conditions for drivers. The possibility
that ambient traffic speeds in the vicinity of the driver can oscillate between zero and some med-
ium speed value substantially reduces the driver�s anticipatory aspect vis-à-vis future traffic con-
ditions. This is especially so when non-truck drivers have trucks ahead of them that block the line
of sight. Also, under stop-and-go traffic, the non-truck vehicles are in close proximity of trucks,
which could enhance the sense of discomfort as drivers may feel intimidated by the truck size.
Further, trucks have reduced operational characteristics (speeds, acceleration, deceleration,
etc.) compared to non-truck vehicles; these tend to get magnified under stop-and-go traffic.

There is a possibility that the driver discomfort under stop-and-go traffic is not actually higher
compared to that for the medium congestion case. This is because speeds tend to be lower in such
situations. This is substantiated by the survey data, which indicates lower discomfort for high con-
gestion compared to medium congestion when only DL responses 1 and 2 are considered as ‘‘low
discomfort’’ in a binary choice framework. Hence, the seemingly greater contribution of the high
congestion variable can be due to a key limitation of SP surveys where driver�s stated discomfort is
higher than the revealed discomfort. This is possible because higher congestion has a negative con-
notation in a driver�s mind and that may be transferred to the notion of discomfort in the vicinity
of trucks though speeds would be significantly lower under stop-and-go traffic. The inconsistency
can also be due to the aggregation of DLs in the binary logit model, where stated DLs 1, 2, and 3
are grouped as ‘‘low discomfort’’. In that case, the percentage of survey respondents choosing low
(or high) discomfort under the MCO and HCO variables is almost identical. We go with this latter
viewpoint based on the insights from the survey data which suggest that high congestion implies
lesser discomfort compared to medium congestion where speeds are significantly higher.

The situational factors TOD, NCO and MCO are not significant as their t-statistics are low,
especially for TOD and NCO. In reality, time-of-day can have significant influence on driver dis-
comfort and the survey data may simply represent an artifice of SP surveys. Similarly, different
congestion levels can influence driver discomfort. However, since these are situational factors,
their influence is more robustly elicited through revealed preference data rather than SP data.
Hence, we retain these variables in the fuzzy model discussed in the next section.

It can be noted that NCO, MCO and HCO represent three levels of traffic congestion. Hence,
we use a single variable for congestion level, labeled CON, and estimated a new model. It indicates
that CON is a significant variable. Based on the preliminary analysis, the variables GEN, HHS,
WEA, TOD, and CON are found to be significant vis-à-vis discomfort levels.

4.3. Fuzzy logic based discomfort level model

The variables considered for the DL model are highlighted in Eq. (1). They include the socio-
economic characteristics age, gender, education and household size. In addition, weather condi-
tions, time-of-day and congestion levels represent the situational factors. Past studies (NHTSA,
1998) on driver behavior suggest that age and education can have a perceptible influence on driv-



Table 3

If–then rules for case study DL model

Category LHS RHS

Gender If driver is a man Discomfort is low

If driver is a woman Discomfort is high

Age If driver is young Discomfort is low

If driver is old Discomfort is high

Education If driver is less-educated Discomfort is low

If driver is well-educated Discomfort is high

Household size If driver has a big family Discomfort is low

If drive has a small family Discomfort is high

Weather If weather is good Discomfort is low

If weather is bad Discomfort is high

Time of day If driving during day Discomfort is low

If driving during night Discomfort is high

Congestion If the traffic is not congested Discomfort is low

If the traffic is highly congested Discomfort is medium

If the traffic is congested with smooth flow Discomfort is high
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ing actions. In general, younger people, whose reaction times are lower, tend to be more aggres-
sive while driving and may maintain lower headways with vehicles ahead. Similarly, better-edu-
cated drivers are likely to employ greater caution while driving. Hence, age and education are
included in the DL model though they are not found to be significant in the preliminary analysis.
This is because the survey data is skewed towards older drivers.

Table 3 highlights the if–then rules employed in the fuzzy logic based DL model for the case
study. They are based on the survey insights and the preliminary analysis. The socioeconomic var-
iables are constant or relatively unchanged. However, the situational factors are time-dependent.
Hence, non-truck driver discomfort levels are dynamic variables in the actual driving situation to
capture the effects of weather, time-of-day and congestion. The variables represented by the if–
then rules are fuzzy in nature except for gender input which is precise. Hence, membership func-
tions are constructed for them as shown in Fig. 5 for the case study. The x-axis represents the
fuzzy variables and the y-axis denotes the possibility value.

Using the approach discussed in Section 2.2, a set of simultaneous equations are solved to esti-
mate the weights associated with the crisp values for the fuzzy variables in Eq. (1). The weights for
the seven attributes are 0.2566, 0.0007, 0.0004, 0.1701, 0.4051, 0.0277, 0.1394, respectively, for
gender, age, education, household size, weather, time-of-day and congestion level. These weights
are consistent with the survey data and the preliminary analysis. As can be seen, the contributions
due to age and education are negligible, consistent with survey insights.
5. Simulation experiments

Simulation experiments are conducted for the case study. Sensitivity analyses are performed for
the causal variables, and the effectiveness of alternative mitigation strategies are evaluated using
the proposed simulation framework.
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Fig. 5. Membership functions for the fuzzy variables for which if–then rules are constructed: (a) driver is young, (b)
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discomfort is low, and (h) discomfort is high.
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5.1. Setup

5.1.1. Programming environment

The simulation experiments are conducted using an agent-based freeway segment traffic flow
simulator constructed using the extended microscopic traffic flow modeling logic discussed in Sec-
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tion 3. An ABS approach offers inherent advantages in the traffic modeling context: individual
elements in the physical system can be modeled as autonomous agents that are capable of inter-
action, learning through experience, perception-reaction, and goal-oriented behavior (Franklin
and Graesser, 1996). ABS can explicitly incorporate truck-related behavior in the form of simple
if–then rules for each driver. The simulation model is coded in the SWARM (Minar et al., 1996)
programming environment. Each vehicle in the simulator, truck or non-truck, is an agent with
specific socioeconomic characteristics that are assigned consistent with the survey data. The sim-
ulation time step is one second. The DL towards trucks for each non-truck driver encountering a
truck ahead is computed for the relevant time steps using the fuzzy logic approach. The AADL is
computed every simulation second using the proposed procedure.

5.1.2. Demand generation and loading

Fig. 6 illustrates a 2-mile long freeway segment from the Borman expressway. Vehicles are gen-
erated for a 30-min duration for a given demand profile and loading factor. The number of trucks
and non-truck vehicles is based on the percentage of trucks in the traffic stream. The vehicles are
generated to a single loading stack queue as illustrated in the figure, assigned randomly to a lane
subject to lane restrictions, and discharged sequentially using a first-in, first-out discipline. The
loading queue can be viewed as a single-lane entrance ramp or the upstream boundary for the seg-
ment for which car–truck interactions analysis is desired. The speed of a vehicle as it enters a lane
at this boundary is set as the average speed for that lane in that time interval. However, the time of
its entrance to the assigned lane depends on the car-following or truck-following space headway
requirements. If sufficient space headway consistent with the following logic does not exist for a
vehicle assigned in the current interval, it is randomly assigned to another lane if it is not con-
strained by lane restrictions, and discharged in the same interval. If lane restrictions preclude
re-assignment, it is held back till the next interval and the loading logic is repeated. This loading
scheme is repeated till the queue is empty. Note that at low demand levels, a loading queue may
not exist. That is, a vehicle may be generated and discharged in the same interval. Conversely,
long loading queues may exist for heavy demand loads.
Movement

Freeway segment in the simulator 
(2 miles) 

Demand 
loading 
queue 

Vehicles are randomly 
assigned to each lane

Fig. 6. Freeway segment in the simulator.
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5.1.3. Simulation parameters

Loading factor and profile. The loading factor benchmarks the demand intensity and is used to
compare alternative demand loads. In this study, the demand 2000 vph is benchmarked as loading
factor 1. The loading profile represents the shape of the time-dependent demand generation. We
consider the uniform and peaking profiles for the experiments. The peaking profile can be insight-
ful as it can generate a greater intensity of congestion in a time-dependent manner, akin to typical
peak periods.

Truck percentage. The truck percentage can vary from 30% to 70% on the Borman expressway.
Hence, four truck percentages (10%, 30%, 50% and 70%) are considered for analysis. However,
70% may represent too high a fraction of truck traffic in most instances. Even on the Borman
expressway, a 70% truck volume is obtained only during off-peak periods. Hence the 70% case
is considered only for low to medium road congestion situations in the case study.

Lane assignment scheme. The lane assignment scheme states the lanes on which trucks are al-
lowed on the freeway. It is the basis for many supply-side strategies to mitigate car–truck inter-
actions. Since the Borman freeway segment has three lanes, the three strategies considered are:
trucks restricted to right lane, trucks restricted to right two lanes, and trucks allowed on all three
lanes. The base case, representing the current strategy on the Borman expressway, restricts trucks
to the right two lanes on the freeway segment.

Agent parameters. As stated earlier, the socioeconomic characteristics are generated for individ-
ual drivers consistent with the SP survey data. They include: (i) gender: the gender is randomly
generated consistent with the survey data; (ii) age: the age ranges from 16 to 80 years; (iii) house-
hold size: ranges from 1 to 8; (iv) education: the education level is randomly generated from four
possibilities (high school or less, some college, college graduate, and postgraduate); (v) driver
type: this is a FRESIM parameter that reflects driver aggressiveness and is a uniform random
number between 1 and 10, with 10 representing the most aggressive driver; and (vi) preferred
speed: a preferred speed under free-flow conditions is assigned to each driver in the simulator
based on the driver type. The preferred speed is uniformly distributed from 60 mph (96.6 kmph)
to 70 mph (112.7 kmph) for non-truck drivers and 55 mph (88.5 kmph) to 65 mph (104.6 kmph)
for truck drivers. This represents the speed differences among vehicle types along the Borman
expressway, which has a speed limit 55 mph. The free-flow speeds for trucks are slightly lower
(by 5 mph) based on Indiana speed limits.

5.1.4. Computational statistics
The freeway segment simulator has a 30-min demand generation period. The simulator begins

when the first vehicle is generated and ends when the last vehicle leaves the 2-mile segment. Hence,
the simulation duration is the time difference between these two events. But, such an approach
inherently introduces start-up and end-time effects to reflect the durations required to fill the 2-
mile segment at the start of the simulation and empty it towards the end of the simulation, respec-
tively. Hence, the start-up and end-time effects can artificially skew the performance measures.
The standard approach to circumvent this issue is to eliminate the statistics for these periods
and compute the performance measures based on the simulation output for the intermediate dura-
tion. Let Ts denote the total simulation duration. It is the difference between the times at which the
last vehicle leaves the freeway segment and the first vehicle enters it. Let Tc denote the interme-
diate duration for which simulation statistics are computed. Let Tb denote the time duration to



S. Peeta et al. / Transportation Research Part B 39 (2005) 417–451 441
populate the freeway section initially; it is the time duration between the simulation start time and
the time at which the first vehicle leaves the freeway segment. However, in this study, it is conserv-
atively set at a constant value of 150 s. Te denotes the time duration between when the last gen-
erated vehicle enters the freeway segment and the last vehicle leaves it. Therefore, the simulation
statistics (performance measures) are computed for the duration:
T c ¼ T s � T b � T e
5.1.5. Performance measures

The performance measures for analyzing alternative scenarios, computed for the duration Tc,
are: (i) AADLTc

; this is the primary indicator of the degree of car–truck interactions, and is com-
puted by averaging AADL(t) over the duration Tc. In the study experiments discussed hereafter,
we simply use ‘‘AADL’’ to denote this measure. (ii) Number of car–truck interactions: this meas-
ure is another indicator for the level of car–truck interactions. It is determined using the logic dis-
cussed in Section 2.1 to identify car–truck interactions. While AADL provides a quantitative
measure for level of discomfort, the number of car–truck interactions is a directly inferable meas-
ure that can provide additional insights. (iii) Average speed: the average speed for the simulation
is obtained by averaging the average freeway segment speeds over all time steps for the duration
Tc. (iv) Average travel time: the average travel time for the simulation is obtained by averaging the
travel times of all vehicles in the duration Tc. The travel time for a vehicle is defined as the time
duration between when a vehicle enters the loading queue and when it leaves the freeway segment.
(v) Average lane speed differential: the average lane speed differential is the average of the differ-
ences in the average speeds for adjacent lanes. Average lane speed differentials are a reasonable
proxy for safety in the freeway segment. This is because past studies suggest greater safety issues
when speed differentials are higher across lanes. In summary, the performance measures (i) and (ii)
are indicators of the level of car–truck interactions; the performance measures (iii) and (iv) relate
to traffic network performance; and (v) is a proxy for safety.

5.2. Simulation experiments

One set of simulation experiments analyze the sensitivity of the DL model to various causal var-
iables and model parameters. Another set of experiments evaluate alternative car–truck interac-
tion mitigation strategies.

5.2.1. Validity of the agent-based simulator
Before conducting the experiments, the validity of the microscopic freeway segment agent-

based traffic simulator is analyzed. This is done by plotting the fundamental traffic flow relation-
ships between speed, density and flow using an initial set of runs on the simulator. The base case
lane restriction strategy with 20% trucks is used, and demand is varied from 1000 to 8000 vehicles
per hour.

The microscopic freeway segment simulator based on the modified logic of the relevant FRE-
SIM components is tested to analyze its validity vis-à-vis realistic traffic flow replication. Traffic
flow realism entails that the simulation flow statistics comply with the fundamental traffic flow
relationships. This is done by plotting these relationships for the FRESIM model without the
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Fig. 7. Fundamental traffic flow relationships generated by agent-based simulator. (a) Traffic flow relationships when

car–truck interactions logic is excluded. (b) Traffic flow relationships when car–truck interactions logic is included.
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car–truck interaction logic and the modified microscopic agent-based simulator constructed as
part of this study. Fig. 7(a) and (b), respectively, show these plots. These data are obtained using
10 simulation runs for the base case with loading factors ranging from 0.5 to 4. In each run, six
time snapshots (at 5, 10, 15, 20, 25 min, and the time at which the last vehicle enters the freeway
segment) are obtained for the various traffic flow parameters. Hence, 60 time snapshots are plot-
ted on each figure. The plots show that both the FRESIM model and the modified simulator are
realistic in terms of replicating the fundamental relationships between speed, density, and flow.
There is a slight deterioration in performance due to car–truck interactions, as highlighted by
the speed-density plots at the higher densities in Fig. 7(b) compared to Fig. 7(a). With this vali-
dation, the modified agent-based simulator is used to analyze the study objectives.

5.2.2. Sensitivity analyses

The DL model sensitivity to various causal variables and parameters is conducted using the
simulator. With 2000 vph demand and 20% trucks for the base case lane strategy, the DL values
range from 1.967 to 4.033 for those non-truck drivers who have interactions with trucks. The im-
pacts of the system parameters (loading factor, demand profile, and truck percentage in the ambi-
ent traffic stream) and situational factors (night-time driving, congestion level, and bad weather)



S. Peeta et al. / Transportation Research Part B 39 (2005) 417–451 443
on driver discomfort levels are discussed in Peeta et al. (2004). Here, we analyze the influence of
other factors and variables.

Congestion. The influence of congestion on AADL can be tracked using its proxy, density. The
AADL increases as congestion levels increase from low to medium, but decreases as we move
from medium to high levels. This trend is consistent with driver behavior realism. For medium
congestion levels, the speeds are relatively higher, but so is the density. Hence, drivers are more
tightly packed together in the traffic stream, though the flow itself is smooth and speeds are rel-
atively high. This increases the likelihood of car–truck interactions based on the logic of Section
2.1 to identify car–truck interactions. At high congestion levels, vehicles are tightly packed to-
gether in the traffic stream. This reduces speeds based on driver psychology of being cautious
when moving in tightly packed streams. Based on the logic for car–truck interactions in Section
2.1, this reduces the likelihood of car and trucks interacting as the 2-s time gap threshold may not
be breached as often as under medium congestion. Detailed insights are provided in Peeta et al.
(2004).

Vehicle destination. The vehicle destination can influence the degree of car–truck interactions.
This is especially so for non-truck vehicles as they are constrained to shift to the right-most lane
to exit. We assume that there is an exit ramp at the end of the 2-mile segment, and that there is a
sign in the middle of the segment that warns of the impending arrival of the exit. Ten percent of
the non-truck drivers entering the freeway segment are assumed to exit at the end of it. This im-
plies the need to shift to the right-most lane, if necessary, before the exit ramp is reached. These
vehicles are assumed to have a 100% desire to perform a lane change after reaching the warning
sign. The AADL is recorded before and after the exit warning sign. The simulation results show
that the AADL is lower before the warning sign (1.35) and higher (1.46) after it. These AADL
values are based on three runs of the simulator for a loading factor 2. This analysis indicates
the significance of vehicle destination to the driver discomfort levels.

Incidents. Incidents can significantly influence AADL depending on their characteristics. This
is because all vehicles blocked by an incident need to shift lanes, which increases the potential
for car–truck interactions. To explore the impacts of incidents, the left-most lane is blocked be-
tween the 1.0 and 1.5 mile markers for the entire simulation duration. Vehicles on the left-most
lane have a 100% desire to perform a lane change on the first half of the freeway segment. The
lead factor, which denotes the disadvantage of remaining in the current lane is set to 1 for the
left-most lane upstream of the bottleneck. The AADL is plotted under different levels of conges-
tion (loading factors 0.5–4) for the first and second halves of the freeway segment, as shown in
Fig. 8(a). The AADL is higher for the first half as non-truck vehicles shift to the middle lane,
increasing the potential for car–truck interactions. The AADL values increase with congestion
levels up to medium congestion levels. Consequently, the difference in AADLs between the first
and second halves of the segment increases with demand load up to some point, and decreases
beyond it.

Demand loading profile. The shape of the demand loading curve can also impact AADL. The
uniform and peaking profiles are considered here. For the same number of vehicles generated,
a peaking profile can lead to worse traffic congestion due to the high loading rates for some dura-
tion. The simulation results for the various loading factors confirm this trend for car–truck inter-
actions as well, as illustrated in Fig. 8(b). The AADL values for the peaking profile are lower. This
is consistent with insights from the sensitivity analysis for congestion levels discussed previously.
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At high congestion levels, the AADL reduces. Since the peaking profile generates relatively higher
congestion levels compared to the uniform loading profile, the AADL is lower for the peaking
profile.

Threshold time gap. As discussed in Section 2.1, we use a 2-s threshold time gap to determine
whether an interaction exists between a truck and a car that follows it. However, the study meth-
odology is independent of the threshold time gap used. Fig. 9 shows the impacts of the threshold
time gap on the AADL for different congestion levels. It plots the AADL values for threshold
gaps 1, 1.5, 2, and 2.5 s. A larger threshold time gap leads to a higher AADL value, and vice versa.
A more conservative outlook implying a stricter interpretation of car–truck interactions would
entail a larger threshold time gap. From the perspective of a traffic engineer addressing the
car–truck interactions problem in a region through the use of mitigation strategies, this implies
lesser tolerance for such interactions. By contrast, a smaller value for the threshold time gap im-
plies a more lenient view of such interactions. In an actual situation, the threshold time gap is
based on the traffic engineer�s tolerance level unless a standard value is mandated by state/federal
guidelines. Fig. 9 also illustrates the trends for AADL under different congestion levels, which are
consistent with the previous discussion.
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5.3. Operational strategies to mitigate car–truck interactions

Operational strategies can be used to reduce car–truck interactions. The base case strategy re-
stricts trucks to the two right lanes of the freeway segment. A nationwide survey of traffic engi-
neers was conducted to identify potential strategies in this context (Zhou, 2003). However,
some of these strategies are not relevant for freeways, and others are not applicable to the Borman
expressway case study. Based on these considerations, four strategies are evaluated: (i) Strategy 1:
This strategy restricts trucks to the right-most lane. Its implementation may require legislation,
though no additional monetary investment. It can reduce the number of car–truck interactions,
but may also reduce the level of service on the right-most lane; (ii) Strategy 2: This strategy allows
trucks on all lanes. It can increase the number of car–truck interactions, but the increased homo-
geneity of traffic across lanes can reduce the lane speed differential; (iii) Strategy 3: Here, an addi-
tional lane is added to the freeway segment, and trucks are then allowed to travel on the two right
lanes. It entails significant monetary costs though it adds more capacity. Also, it may generate
additional traffic in the long-term due to system-level interactions of demand and performance.
This suggests cost–benefit trade-offs under this strategy; and (iv) Strategy 4: In this strategy,
trucks are diverted to alternative routes. This can be done using ‘‘truck-only routes’’ ‘‘toll truck-
ways’’ and ‘‘express lanes’’. However, it entails the presence of a viable alternative to route trucks,
either through diversion or truck-only routes. Hence, this strategy may involve monetary invest-
ment. Also, if a detour route is used, its traffic conditions may deteriorate due to the presence of
the diverted trucks.

A key contribution of this paper is the methodology to evaluate car–truck interactions. How-
ever, traffic performance, safety and monetary costs are typically the primary factors for decision-
making vis-à-vis planning and operations. Hence, it is important to view the effectiveness of a
strategy from a more holistic perspective than just focusing on its ability to reduce car–truck inter-
actions. This implies that there are trade-offs involved, and that the mitigation capability may rep-
resent a secondary consideration only.

A comprehensive description of the performance measures under the first three mitigation strat-
egies is provided in Zhou (2003) for different demand loads (2000, 3500, 5000, and 6000 vph) and



Table 4

Comparison of alternative mitigation strategies

Traffic load Strategies Truck % AADL Number of

car–truck

interactions

Average speeda Average lane speed

differentiala

2000 vph Base case 10 1.16 124 103.9 4.4

30 1.36 233 101.3 5.1

50 1.47 232 99.2 6.7

70 1.61 176 96.7 7.2

Strategy 1 10 1.09 69 104.6 5.1

30 1.22 115 102.0 7.3

50 1.25 68 98.9 8.3

70 1.16 26 95.7 8.8

Strategy 2 10 1.16 120 103.5 1.9

30 1.38 244 100.5 2.0

50 1.50 283 98.7 1.4

70 1.74 257 96.5 1.0

Strategy 3 10 1.09 82 106.1 3.3

30 1.26 178 102.8 4.8

50 1.45 202 99.8 5.5

70 1.39 117 97.5 5.7

3500 vph Base case 10 1.17 198 102.8 4.6

30 1.48 397 99.6 6.2

50 1.62 400 97.2 7.0

70 1.69 255 94.5 8.1

Strategy 1 10 1.15 151 103.4 5.7

30 1.21 159 100.7 7.8

50 1.07 34 85.6 9.1

Strategy 2 10 1.2 219 101.8 1.5

30 1.48 449 98.0 3.0

50 1.76 554 96.1 0.9

70 2.07 461 94.4 0.6

Strategy 3 10 1.13 178 105.5 3.9

30 1.34 356 102.3 1.8

50 1.52 321 98.7 6.2

70 1.52 174 95.5 6.6

5000 vph Base case 10 1.17 257 101.3 10.6

30 1.42 495 98.0 7.0

50 1.59 467 88.6 8.5

Strategy 1 10 1.15 208 102.0 6.6

30 1.17 171 100.0 8.9
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Table 4 (continued)

Traffic load Strategies Truck % AADL Number of

car–truck

interactions

Average speeda Average lane speed

differentiala

Strategy 2 10 1.17 252 99.2 2.0

30 1.50 628 95.6 2.0

50 1.78 831 89.6 3.5

Strategy 3 10 1.17 259 104.2 4.6

30 1.40 472 100.6 2.7

50 1.45 340 97.5 6.8

6000 vph Base case 10 1.15 272 92.3 5.8

30 1.42 698 53.6 15.3

50 1.38 874 26.3 23.3

Strategy 1 10 1.07 446 42.2 33.5

Strategy 2 10 1.13 562 57.6 2.9

30 1.32 1304 44.4 15.1

50 1.52 1258 41.7 6.9

Strategy 3 10 1.17 322 103.4 4.7

30 1.38 505 99.7 6.4

50 1.42 359 71.5 7.1
a Units: speed (kmph).
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truck percentages (10%, 30%, 50%, and 70%). Here, we summarize the aggregated values of these
performance measures in Table 4. The relevant results are discussed hereafter.

5.3.1. Effect of truck percentage
The results indicate that the number of interactions involving trucks and non-truck vehicles in-

creases with truck percentage up to a certain point and reduces beyond that point, especially for
the low demand loadings (2000 and 3500 vph). This trend is also valid for the higher demand load-
ing scenarios as well. This indicates the interplay between the number of non-truck vehicles in the
traffic stream and the potential for interactions with trucks. Hence, when truck percentages are
very high, there are fewer non-truck vehicles on the freeway segment, and this effect dominates
the potential for car–truck interactions, especially for lower congestion levels. At higher conges-
tion levels (5000, 6000 vph), the tight packing of vehicles in the traffic stream can reduce this effect
at times.

Fig. 10 shows the AADL values for the various demand loads and truck percentages. It illus-
trates the influence of two effects on AADL: (i) the percentage of lanes that trucks can use, and (ii)
the percentage of trucks in the traffic stream. For Strategies 1 and 3, the AADL increases up to a
certain point with truck percentage and reduces beyond that point. This is because when trucks
are restricted to a lesser percentage of lanes, non-truck vehicles have a greater opportunity to
avoid trucks. This effect is further reinforced by the reduced number of non-truck vehicles when
the truck percentage increases. The combined effect can lead to reduced AADL for higher truck
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percentages. By contrast, under the base case and Strategy 2, trucks can use a higher percentage of
lanes. This leads to a higher probability of interactions with non-truck vehicles, which dominates
the effect due to the decreasing number of non-truck vehicles as truck percentage increases.

From the traffic performance viewpoint, since truck free-flow speeds are slightly lower than for
non-trucks, the average speeds are lower with increasing truck traffic.

5.3.2. Lane restriction strategies

When truck percentages are relatively low (10% and 30%) and demand loads are not very high,
the strategy restricting trucks to the right-most lane is a good strategy vis-à-vis mitigating car–
truck interactions without deteriorating the traffic performance (average travel time). However,
the average lane speed differential increases.

When truck percentages are high (50% and 70%) and the demand is high to very high, restricting
trucks to the right-most lane makes this lane highly congested leading to significant performance
deterioration. In such situations, Strategy 1 is not a good solution to the car–truck interactions
problem. For the same reason, the associated strategy is not realistic and has no statistics in Table
4 for higher truck percentages. Allowing trucks on all lanes can improve the AADL to a small ex-
tent, especially under very high demand loads. But, in most cases, the number of car–truck inter-
actions increases leading to significantly higher AADLs compared to even the base case. Also, the
average speed on the left-most lane decreases significantly due to the presence of trucks on it.

5.3.3. Addition of a lane

The addition of a lane to the existing freeway segment increases freeway capacity, involves sig-
nificant monetary investment, disrupts traffic during the construction, and attracts more demand
in the long run. Hence, it adds value only under high demand loads with high truck percentages.
That is, the choice of adding a lane should be based primarily in terms of reducing congestion
rather than some benefits in terms of AADL reduction. While adding a lane can aid substantially
in reducing congestion effects, the influence on AADL may be tangential.

5.3.4. Truck diversion
Strategy 4 is evaluated for different levels of truck diversions. It should be noted here that the

impacts on the detour routes due to truck diversion are not considered here. The lane assignment
is based on the base case, while the demand load is 4000 vph, and 20% of the vehicles are trucks.
The AADL is 1 when all trucks are diverted, implying zero discomfort. The AADL values are 1.31
and 1.18, respectively, for the 0% and 50% truck diversion cases. Hence, as higher percentages of
trucks are diverted, AADL reduces. Truck diversion also improves traffic performance on the
freeway segment.
6. Concluding comments

This paper introduces the notion of car–truck interactions from the perspective of non-truck
drivers to more robustly incorporate the impacts of their actions in the vicinity of trucks. It views
these interactions from a driver psychology aspect and hypothesizes that the driver actions/deci-
sions are due to their ‘‘discomfort’’ in this regard. It seeks to quantify this discomfort on the
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premise that the associated driver actions depend on the individual socioeconomic characteristics
and the situational factors encountered by the driver. Such a capability bridges a key methodo-
logical gap in the traffic flow modeling arena where trucks are not differentiated from other vehi-
cles vis-à-vis driver behavior. From a practical standpoint, it provides a mechanism to evaluate
alternative strategies to mitigate car–truck interactions, as such interactions can have significant
implications for traffic performance, safety, and the non-truck driver travel experience.

The proposed methodology is implemented for freeway segments by extending existing micro-
scopic traffic flow modeling components. Simulation experiments using the Borman expressway
case study provide insights on the effectiveness of the methodology to capture the impacts of
non-truck driver actions when following trucks. Further, the methodology enables the compari-
son of alternative mitigations strategies from a holistic perspective that factors performance and
safety in addition to the degree of car–truck interactions.

More broadly, the study methodology provides some behavior-based modeling directions and
components for the next-generation of traffic flow models that focus on increased realism in rep-
licating traffic conditions. It emphasizes modeling that can be validated and calibrated using
measurable data. Further, the explicit incorporation of driver behavior is a robust mechanism
to address other modeling limitations in the traffic flow arena such as the effect of road geometry
on traffic conditions.

While the research addressed in this paper enhances the state-of-the-art in modeling car–truck
interactions, it motivates further research in several directions. We address car–truck interactions
for freeways here. A more general approach entails capturing these interactions for arterial roads
and other non-freeway road facilities. Also, while the proposed models can be calibrated using
measured data, the associated parameters (for the truck-following and lane-changing logics) were
based on past studies. This was primarily due to the lack of resources in terms of adequate video-
based sensors or driving simulators. It would be practically insightful to calibrate these parame-
ters using empirical data collected in the region of interest. From a modeling standpoint, truck
driver behavior is not addressed in this paper. It is useful as truck drivers are constrained by
the substantial blind spot and maneuverability restrictions due to the physical and operational
characteristics of trucks.
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