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ABSTRACT 

Self-consolidating concrete (SCC) is a highly flowable, non-segregating concrete that spreads into place, 
fills formwork, and encapsulates reinforcement without mechanical consolidation. SCC is increasingly 
being used worldwide because it has been found to offer a high-quality product with significant 
reductions in equipment use, construction time, labor, and construction noise. The stability, or static 
segregation resistance, of this new concrete type is typically assessed in terms of a Hardened Visual 
Stability Index (HVSI). Traditionally, HVSI assessment is based on visual judgment and is therefore 
severely limited by human error, low efficiency, and work tedium. As such, the present study developed 
and implemented a methodology for automatically evaluating SCC stability. This was done in several 
steps: first, converting the image of a typical concrete sample (a cut surface with various shades of grey) 
into a binary image of light colors (aggregates) and dark colors (concrete cement), identifying aggregate 
sizes, detecting the mortar layer thickness, and finally, using statistical analysis to derive the HVSI. 
Algorithms were developed for each phase and were implemented using standard coding languages. In 
effect, the methodology digitally processes a given concrete sample image and assesses its stability in 
terms of HVSI. The accuracy of the new methodology was checked using control observations and was 
found to provide a reliable assessment of SCC stability in terms of static segregation resistance. 
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INTRODUCTION 

Self-consolidating concrete (SCC) is an innovative, non-segregating concrete that does not require 
mechanical consolidation (vibration) for placing and compaction. SCC is able to flow under its own 
weight, completely filling formwork and achieving full compaction even in the presence of congested 
reinforcement. The hardened concrete is dense, homogeneous and has the same engineering properties 
and durability as traditional vibrated concrete (1,2). Since the 1980s when SCC was first introduced in 
Europe and Japan, there has been worldwide application of this concrete type for precast, prestressed, or 
cast-in-place concrete construction. The benefits of SCC include quick concrete placement, faster 
construction times and enhanced flow around congested reinforcement. The fluidity and segregation 
resistance of SCC helps to achieve a high degree of mix homogeneity, minimal concrete voids and 
uniform concrete strength, and provides the potential for a superior level of finish and durability to the 
structure (3). SCC is often produced with low water-cement ratio and provides the potential for early 
attainment of specified strengths, earlier demolding, and consequently, quicker opening of the facility to 
public use (2). The elimination of mechanical consolidation equipment leads to savings in equipment use 
and labor, improved environmental quality in the construction area, and reduced exposure of construction 
workers and surrounding areas to equipment noise and vibration. With such improvements in construction 
delivery, worker health/safety and environmental impacts, SCC has become an increasingly attractive 
option for concrete construction. 

A major issue associated with SCC, however, is that it has two plastic state properties: flowability 
(ability to flow into and within intended enclosure) and stability or static segregation resistance (the 
ability to withstand undue separation of aggregate and sand-cement). Flowability is generally attained 
using high-range, water-reducing admixtures; stability is attained using a certain specified aggregate 
gradation pattern and/or by using admixtures that modify concrete viscosity (4). 

Agencies are developing and/or implementing several new test methods to characterize the 
properties of SCC. Flowability, for example, is measured in terms of the spread of the fresh concrete 
sample using a modified version of the slump test (5). The J-Ring, U-Box, and AL-Box tests measure the 
passing ability of concrete in congested reinforcement (6). At the Illinois Department of Transportation 
(IDOT), SCC stability is assessed visually,  using protocols described in the Illinois Test Procedure SCC-
6 – Test Method for Static Segregation of Hardened Self-Consolidating Concrete Cylinders (7). This test, 
which has been used since 2003, involves casting or coring concrete, cutting the core lengthwise in two, 
visually examining the extent of segregation, and expressing such stability in terms of a Hardened Visual 
Stability Index (HVSI). HVSI ratings have four levels that are based on the length of top concrete mortar 
layer and variance in size and coverage of coarse aggregate distribution from top to bottom of concrete 
sample.  Illustrations of HVSI ratings for cut concrete surface images are provided in FIGURE 1. 
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Rating 0 (Stable) 1 (Stable) 2 (Unstable) 3 (Unstable) 

 
 
 
 
 
 

Image 

 

 

 

 

 

 

 

 
 
 
Description 

No mortar layer at 
the top of the cut 
plane and no variance 
in size and percent 
area of coarse 
aggregate distribution 
from top to bottom. 
 

No mortar layer at the 
top of the cut plane but 
slight variance in size 
and percent area of 
coarse aggregate 
distribution from top to 
bottom. 

Slight mortar layer, 
less than 25 mm (1 in.) 
tall, at the top of the 
cut plane and distinct 
variance in size and 
percent area of coarse 
aggregate distribution 
from top to bottom. 

Clearly segregated as 
evidenced by a mortar 
layer greater than 25 
mm (1 in.) tall and/or 
considerable variance 
in size and percent 
area of coarse 
aggregate distribution 
from top to bottom. 

 
FIGURE 1  Rating Criteria for Hardened SpecimenVisual Stability Index (HVSI). 

 
 

While the traditional (visual) assessment of HVSI has been proven to be fairly effective in 
measuring SCC stability, it faces several limitations such as lack of adequate experienced HVSI raters, 
errors in human judgment, subjectivity of the ratings, and tediousness and low efficiency of the test 
process, particularly when there are a large number of concrete samples. 

The object of this study is to develop a quick, consistent, and reliable automated system for 
measuring SCC stability by digitally processing the image of the cut concrete surface. This paper 
describes a study effort that set out to realize this objective using image processing technology. 
Specifically, the steps of the study, as reflected in this organization of this paper, are as follows: 

• Segmentation of the cut concrete image as a binary image that identifies and separates relatively 
light areas and relatively grey areas, and detecting the sizes and positions of all identified 
aggregates.  

• Detection of the mortar layer (the position where there is a sudden significant change in aggregate 
coverage) by scanning the image from top to bottom. 

• Statistical analyses for aggregate areas and measuring the degree of variance in size and 
aggregate coverage. 

• Determining the HVSI on the basis of the measured variance and the detected length of the 
mortar layer. 
The paper describes each of the above steps and presents analytical methods, sample SCC images 

and their HVSI rating results, and validation of the test results. 
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AGGREGATE DETECTION   

In a grey-level image of a cut concrete surface of a test cylinder, the color of aggregates tends to be light 
grey while that of concrete cement tends to be dark grey and is fairly uniform. The first step of aggregate 
detection, therefore, was to use this dichotomy of concrete color to segment the grey image to yield a 
binary image in which aggregates appear as white objects and concrete cement appears as the black 
background. The bifurcation of the cut concrete surface color greatly simplified the image processing 
procedure and time, and it was methodologically achieved by establishing a histogram of grey color 
intensity levels in the image, and then thresholding the image at a particular intensity level by analyzing 
the histogram (8). A thresholding procedure from a freely available image processing library (9) was used 
to convert the grey-level image into a binary (black and white) image. Illustrating the concept of grey 
image binary segmentation, FIGURE 2 (a) shows the histogram of the image and the optimized threshold 
value at 160. FIGURE 2 (b) shows the gray image and the binary image which was segmented based on 
the threshold value. During the color segmentation in this example, any pixel scales below the threshold 
value (160) were converted black, while any pixel scales above the threshold value converted as white.   
 
 

 

a) Image Histogram and Threshold Value 

 

 

FIGURE  2   Grey Image Binary Segmentation. 

b) Original and Binary Images 
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The next step was to recognize the aggregate positions as a prelude to the subsequent 
determination of the size and location of the aggregate.  

Aggregate Recognition  

Using the binary image established at the aggregate detection step, aggregates were then recognized by 
collecting each white pixel and assembling (and linking) all connected pixels that are perceived to 
constitute an individual aggregate. A labeled link-list (10) served as the data structure used for the 
algorithm for this task. Two white pixels are defined as “connected” if they are only vertically or 
horizontally adjacent – pixels that are only diagonally adjacent are not considered connected. Therefore, 
at a given pixel position during scanning, the connection to other pixels only needs to be checked with 
two positions, the top and left pixels. This is because the order of pixel scanning is as follows: rows are 
scanned from top to bottom; and in each row, scanning proceeds from left to right. The connection with 
the right and bottom pixels is checked at a later stage when the scanning process reaches those pixels. 
TABLE 1 illustrates each step of aggregate recognition that uses four operations on a given white pixel 
“A” based on the colors of top and left adjacent pixels, “B” and “C”. TABLE 2 illustrates the aggregate 
recognition procedure for an image that is five pixels long and five pixels wide. This algorithm involves 
several link-list operations, but the image needs to be scanned only once so that each aggregate in the 
image can be labeled on the link-list. Any additional information required for identifying the aggregate 
can simply be obtained from the labeled link-lists rather than reprocessing the image. At the end of the 
scanning process, all white pixels found to be connected are assembled to constitute a single aggregate. 
 

 
TABLE 1  Aggregate Recognition Operation 

 
Case Number Case I Case II Case III 

 
Case IV 

 
 
 
General Pixel 
Positions 
 

 
 B 

C A 

 
B, C are black 

 
 B 

C A 

 
 B is black, C is 
white 

 
 B 

C A 

 
 B is white, C is 
black 

 
 B 

C A 

 
 B, C are white 

 
 Operation 

Create a new label 
link for A 

Add A into the link 
for C 

Add A into the link 
for B 

Add A into the link 
for B, and merge 
Links for B and for C 

 
 
 

TABLE 2  Illustration of the Pixel Collection Operation 
 

Position (2,2) (2,4) (3,2) (3,3) (3,4) (5,2) (5,5) 

Operatio
n 

Case I Case I Case III Case II Case IV Case I N/A 

 
Pixels 

 
          
  1       
          
          
           

 
          
  1   2    
          
          
           

 
     
 1  2  
 1    
     
      

 
     
 1  2  
 1 1   
     
      

 
     
 2  2  
 2 2 2  
     
      

 
          
  2   2   
  2 2 2   
          
  3        

 
     
 2  2  
 2 2 2  
     
 3     
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Aggregate Area and Size 

Aggregate recognition is followed by determination of aggregate areas and sizes. The area occupied by 
each aggregate can be simply computed as the product of the unit pixel area and the total number of 
pixels on its link-list. The unit pixel area can be determined from the known concrete cylinder dimension 
and the image dimension in terms of the number of pixels. It is assumed that each aggregate occupies a 
shape that is roughly circular and that the aggregate size is represented by the diameter of that area. 
 

MORTAR LAYER DETECTION 

Heavy coarse aggregate tends to settle to the bottom of fresh concrete while mortar (with little or no 
coarse aggregate) tends to remain at the top (FIGURE 3). This process, known as segregation of the 
coarse aggregate from mortar, is particularly experienced in concrete of high flowability. Segregation 
therefore yields two layers: an upper mortar layer and a lower remaining layer. The depth of the mortar 
layer is an indication of the extent of concrete segregation and is therefore an important criterion in the 
evaluation of the HVSI index. By facilitating the determination of mortar layer depth, image processing 
technology helps determine the extent of concrete segregation. The procedure for detecting the length of 
mortar layer includes an estimation of the average aggregate area in the remaining layer. Scanning 
proceeds from top to bottom of the concrete sample image, and at any point of the scanning process, the 
average area occupied by aggregates is computed. As the scanning proceeds, any significant increase in 
the average aggregate area is flagged as the “transition” or “boundary” zone between the upper mortar 
layer and the lower remaining layer. With this knowledge of the initial scanning location and the 
transition line, the depth of the mortar layer can then be measured. 
 
 

 

FIGURE 3  Lengths of Mortar and Remaining Layers.  
 
Estimating the Average Aggregate Area  

In this step, the minimum length of remaining layer was first calculated. Then the average aggregate area 
along the minimum length of the remaining layer was calculated and used to represent the average 
aggregate area in the total length of the remaining layer (FIGURE 4). 

As can be inferred from FIGURE 4, the greater the segregation, the smaller the length of the 
remaining layer. Therefore, the minimum length of the remaining layer is the worst (hypothetical) 
segregation scenario where all (and only) aggregates bunch together as a solid mass at the bottom of the 
sample. 

 

B 

L 
LR 

LM 
 

B 

L 
LR 

LM 

Legend 
L = Sample Length 
B = Sample width 
LM = Length of Mortar Layer 
LR = Length of Remaining Layer 
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FIGURE 4   Minimum Length of Remaining Layer. 
 
The total aggregate area, therefore, is the product of the minimum length of the remaining layer, 

LRmin and the sample width, B. Therefore, LRmin is calculated as: 
  ),...2,1,0(min Li

B
iA

RL =∑=  

where ),...2,1,0( LiAi =∑  is  the sum of aggregate areas in each incremental horizontal strip from the 
top (length = 0) to the bottom (length = L).  

The average of aggregate area (Aavg) of the sample per incremental horizontal strip along the 
length of the remaining layer can therefore be obtained as:  
 ),...min(

min
LRLLi

RL
iA

avgA −=∑=  

Since LRmin is the minimum length of the remaining layer, Aavg is calculated only for the lower part 
of remaining layer (excluding the mortar layer) denoted by L’R in FIGURE 4. It is therefore reasonable to 
represent the average of aggregate area in the total remaining layer by Aavg, so that: 

),...,'(' LRLLi
avgA

iA
RL −=

∑
≈  

where, '
RL  is estimated length of the remaining layer (as shown in FIGURE 4). Since the fraction of the 

aggregate area in the mortar layer is relatively negligible, ),...( ' LLLiA Ri −=∑ is close 

to ),...0( LiAi =∑ . The length of remaining layer can be estimated as follows:  

),...,0(' Li
A

A
L

avg

i
R =≈ ∑ . 

Therefore, the average of aggregate areas in the reminder layer '
avgA  can be estimated as follows: 

),...,( '
'

' LLLi
L

A
A R

R

i
avg −== ∑ . 

Legend 
L = Sample Length, B = Sample width, LRmin = Minimum Length of Remaining Layer 
L’R = Length of Remaining Layer 

L 

 

 

L 

 

 

L 

 

 

L 

 

 

+=
L’R 

L 
Mortar 
Only 

(hypothetical) 

Aggregates 
Only 

(hypothetical) 

B 

LRmin 
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The estimated length of the remaining layer ( '
RL ) and average of aggregate areas ( '

avgA ) are used 
to determine the final mortar layer in the following section. The estimated length of remaining layer 
exceeds that of the minimum length of remaining layer, and there are more aggregate used in the 
estimation of average aggregate area.  As such, in order to increase the estimation reliability, '

avgA  instead 

of avgA  is used as the estimated average of aggregate areas.  
 

Determining the Length of Mortar Layer 

FIGURE 5 illustrates how the length of the mortar layer is determined. This is done on the basis of the 
relationship between the aggregate area and image length.  The x-axis represents the image length in the 
top-to-bottom direction, and the y-axis represents the aggregate area at each length unit (mm). To identify 
the mortar layer, the image is first scanned top-to-bottom  to identify the position PM where the aggregate 
area first reaches the estimated aggregate coverage ( '

RA ).  Then starting from the position PM, the image 
is scanned in the reverse direction to determine the position, '

MP where the aggregate area is same as the 
average of aggregate area in the current mortar layer ( '

MA ). Lastly, if the estimated value of '
MA  is 

significantly less than the '
RA , the position '

MP is considered as the transition boundary between the mortar 
layer and the remaining layer. The first two steps are to identify the sudden change of the aggregate areas 
along the image length, and the last step is to determine whether the top section of detection satisfies the 
detection criteria established for the mortar layer.  
 

 
 

FIGURE 5   Determination of the Length of the Mortar Layer – Example. 
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In the actual concrete cylinder sample shown as FIGURE 5, the estimated position length of the 
remaining layer starts at a depth of 115mm from the top of the sample and ends at the bottom of the 
sample (depth of 300mm from the top). The length of the remaining layer is, therefore, 185mm. The 
average of aggregate areas is approximately 85 mm2. At the first step, the position at length 135 mm is 
identified as MP where the aggregate area is equal to '

RA . At the second step, the position at length 105 
mm is identified as '

MP where the aggregate area is equal to '
MA . Since '

MA is significantly less than '
RA , 

the position '
MP  at the length 105mm is determined as the boundary position. 

 
EVALUATING THE AGGREGATE SIZE DISTRIBUTION  

By statistically analyzing the averages of aggregate areas at each 5mm-length segment in the remaining 
layer, the distribution of aggregate areas all along the sample length can be determined. This is done on 
the basis of the variance in aggregate size and also in aggregate coverage from the top to bottom. 
Variance was calculated for each of three sections of the remaining layer (shown in FIGURE 6) and also 
for three aggregate size ranges. The variance in aggregate size in each aggregate size range between each 
pair of top (Section 1), middle (Section 2) and bottom (Section 3) sections were computed. This was done 
using studentized t tests. Since the larger aggregates have a greater impact on the final evaluation of 
aggregate variance, different variance weights were given on the basis of their statistical P-values and 
aggregate size (TABLE 3). The sum of the variance indices gives the variance weight (TABLE 3) and the 
minimum and maximum variance weights are 0 to 42, respectively. The variance classification depends 
on the variance weight (0 – 15 is Low; 16 – 23 is Medium; and 24 – 42 is High). The boundary is initially 
set at 15 and 23 is to guarantee the image is rated as Medium if there are two strongly significant test 
results (P-Value > 0.025) in aggregate size range III, and is rated as the High  if there are three strongly 
significant test results in aggregate size range III.  
 
 
 

 
FIGURE 6  Lengths of Mortar and Remaining Layers.  

 
 
 
 
 

Legend 
L = Sample Length 
B = Sample width 
LM = Length of Mortar Layer 
LR = Length of Remaining Layer 

  

B   

  
  LR

 
 

LM  
 

Section 1 

Section 2 

Section 3 

LR/3 

LR/3 

LR/3 
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TABLE 3  Criteria for Assigning Aggregate Size Variance Indices and Weights 

Section Comparison Aggregate Size Range P-Value Variance Index 
> 0.05 0 

 0.05 to 0.025 1 
Range I 
(Small) 

From 4.75 to 9.5 mm ≤ 0.025 2 
> 0.05 0 

0.05 to 0.025 2 
Range II 

(Medium) 
From 9.6 to 16.0 mm ≤ 0.025 4 

> 0.05 0 
0.05 to 0.025 4 

 
 

Section 1 V.S. 
Section 2 

 
Section 2 V.S. 

Section 3 
 

Section 3 V.S. 
Section 1 

Range III 
(Large) 

From 16.1 to 50.0 mm ≤ 0.025 8 
Sum of Variance Indices = Variance weight = 0 – 42 

      Note:  Variance classification level is a function of the total value of indexes is as follows: 
Total Variance: Low: 0 – 15; Medium: 16 – 23; High: 24 – 42. 
 

Computer algorithms were written for the three processes of aggregate detection (aggregate 
recognition, aggregate area and size determination, boundary tracking), mortar layer detection (estimating 
the average aggregate area and determining the length of the mortar layer) and evaluating the aggregate 
size distribution. 
 
Implementation of the Algorithms 

The algorithms developed for each step of the concrete stability assessment methodology were 
implemented in computer language with a user-friendly Visual C++ interface. In the screenshot (FIGURE 
7), the interface comprises three sections, an Image Viewer, a Tool Viewer, and a Graphic Viewer. The 
Image Viewer displays both the original image and processed image of the concrete cylinder sample. The 
Tool Viewer allows users to input cylinder size, and to change image processing criteria such as 
aggregate size range and image color levels. The graphic view displays the image histogram, digitized 
aggregate sizes and positions, mortar layer detection, and summary table for statistical analyses.  
 

 
FIGURE 7   Evaluation System Software Interface. 
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FIGURE 8 shows the original image of a sample concrete cylinder. The figure also shows other 
images processed (using the algorithms developed in this paper) from the original sample on the basis of 
different aggregate sizing criteria. FIGURE 9 shows a screenshot showing the results of the statistical 
tests of aggregate size variance, length of the mortar layer, and the determined rating index (HVSI 
values). 
 

                           
Original Image Aggregate Size  

> 4.75 mm 
 Boundary for  

Agg. Size > 4.75 mm  
 

                            

Aggregate Size 
> 4.75mm & <=9.5mm 

Aggregate Size 
> 9.5mm & <=16.0mm 

Aggregate Size 
> 16.0mm  

 
FIGURE 8   Processed Image of Sample Showing Various Aggregate Size Ranges. 
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FIGURE  9   Screenshot Showing Sample Statistical Analyses and HVSI Determination. 

 
VALIDATION OF THE DEVELOPED SYSTEM 
The automated system for detection of aggregates and mortar layer and subsequently for HVSI 
measurement was tested for accuracy using 33 SCC cylinder images. The HVSI of these images were 
rated by a panel of experts, and then the developed system was used to determine the HVSI. TABLE 4 
compares both HVSI measurements. The student T test for paired samples was carried out to ascertain 
whether there was any significant difference in results from the two measurement methods. The results 
(TABLE 5) showed that there is no significant difference in the results from these two test methods. This 
suggests that the HVSI measurements from the developed system are satisfactory. 
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TABLE  4   Validation of the Automated HVSI Assessment Tool 

Sample  
ID 

HVSI from 
 Experts’ 

Assessments 

HVSI from 
Developed  

Tool 

HVSI 
Deviation 

1 2 2 0 
2 1 2 1 
3 2 3 1 
4 0 0 0 
5 0 0 0 
6 1 1 0 
7 1 2 1 
8 1 0 -1 
9 1 0 -1 

10 1 1 0 
11 1 1 0 
12 3 3 0 
13 3 3 0 
14 3 3 0 
15 0 0 0 
16 2 2 0 
17 1 0 -1 
18 0 0 0 
19 1 1 0 
20 0 0 0 
21 0 0 0 
22 2 3 1 
23 1 1 0 
24 3 3 0 
25 0 1 1 
26 1 1 0 
27 1 0 -1 
28 2 2 0 
29 2 2 0 
30 2 2 0 
31 3 3 0 
32 3 3 0 
33 0 0 0 

 

TABLE 5   Pairwise T-Test Results 

Test Method HVSI from  
Experts’ Assessments 

HVSI from  
Developed System 

Mean 1.33 1.36 
Variance 1.104 1.426 

Observation 33 33 
Hypothesized Mean Difference 0 

Degrees of Freedom 32 
t -0.328 

P (T≤ t) two-tail 0.744 
T Critical two-tail (α = 0.05) 2.037 
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SUMMARY AND CONCLUSIONS 

This paper documented the development and implementation of algorithms for automatically measuring 
the static segregation resistance (stability) of SCC. The stability was measured in terms of a Hardened 
Visual Stability Index (HVSI). The automated system can replace the traditional (visual) assessment 
method as it overcomes the limitations of the latter such as human error, low efficiency, and work tedium. 
The automated process involves: digital processing of a concrete sample image, generation of a binary 
image of light colors (aggregates) and dark colors (concrete cement), identifying aggregate sizes and 
positions, detecting the mortar layer position and thickness, and assessing the concrete sample stability in 
terms of HVSI. The developed algorithms were implemented using standard coding languages. The 
accuracy of the automated system was checked using control observations and it was found that the new 
system is capable of reliably and consistently assessing concrete stability in terms of static segregation 
resistance. Notwithstanding the validation efforts of this paper, the conduction of further field tests is 
needed to completely validate the reliability of the algorithms. 
 The impetus for developing automated systems for construction quality assurance is rooted in 
emerging trends in the construction and transportation sectors. As more and more States turn to 
performance-based contracting and other innovative practices of construction delivery, there is an 
increasing need for quick, inexpensive, and reliable inspection of finished products. This need is 
particularly felt at the current time that is characterized by general trends in the current transportation 
environment such as uncertainty of sustained funding, increasing user expectations for shorter-period 
workzones, incipient retirement of the baby boomer generation and loss of its vast knowledge base, and 
general shortage of skilled engineering and inspection personnel. Opportunities for addressing this 
problem include the use of technology including image recognition. This paper exploits existing 
knowledge to address specific quality evaluation of a new type of high performance concrete.  
 
Future Work 

Possible enhancements to the developed system include color segmentation to replace or complement 
binary segmentation. This would improve the level to which aggregates of all colors (even dark shades) 
could be identified. Secondly, an additional algorithm could be developed to prevent the situation where 
separate multiple connected aggregates are mis-identified as larger aggregates. In the present study, the 
boundary tracking procedure is used solely for visualizing the aggregate size distributions. Possible future 
enhancements in this regard include improvement of aggregate detection by helping to discern whether a 
detected white area is only a single large aggregate or whether it actually consists of multiple small 
aggregates. It is expected that this enhancement would greatly minimize errors in aggregate recognition. 
Thirdly, future work could adapt the developed procedure to carry out an analysis of particle size 
distribution (gradation analysis) of cut surfaces of concrete made of ordinary Portland cement or asphaltic 
cement. Such cut surfaces may be cast concrete moulds or cored samples from hardened cast or cast 
concrete. Finally, the issue of image background can be addressed in future work. In the present study, the 
requirement for the input image is that it must contain only the image of the cut surface and no 
background of other material. In future, an enhanced system could overcome this limitation by 
automatically recognizing and distinguishing the concrete surface image from any other image and 
excluding the latter from the analysis. 
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