

Basic Principles of Linear Algebra

Matrices and Vectors

- A Matrix is a rectangular array of numbers arranged in rows and columns.
- For example, the dimensions of the matrix below are 2 × 3 (read "two by three"), because there are two rows and three columns.

• A column vector or column matrix is an *m* × 1 matrix (i.e., a matrix consisting of a single column of m elements).

5

Transpose of a Matrix

- Given a matrix A: $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$ with m rows and n columns
- The transpose of the matrix is expressed as follows:

 $-A^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}$ with n rows and m columns

Symmetric and Skew Matrices

• A symmetric matrix is a square matrix where $a_{ij} = a_{ji}$

- $-A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 5 \end{bmatrix}$ $-A = A^{T}$
- A skew symmetric matrix is a square matrix where $a_{ij} = -a_{ji}$ & diagonal elements are zeros

$$- A = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & 6 \\ 3 & -6 & 0 \end{bmatrix}$$
$$- A^T = -A$$

Inverse of a Matrix

- The inverse of an invertible square matrix A is represented as A^{-1}
- $A A^{-1} = A^{-1}A = Identity Matrix$

•
$$I_n = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}_{n \times n}$$

• Inverse of a symmetric matrix is a symmetric matrix

Magnitude of a Vector

- Given a vector: $\vec{u} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}$
- Its magnitude (norm) $\|\vec{u}\| = \sqrt{\left(u_x^2 + u_y^2 + u_z^2\right)}$

CE 597

 \vec{u}

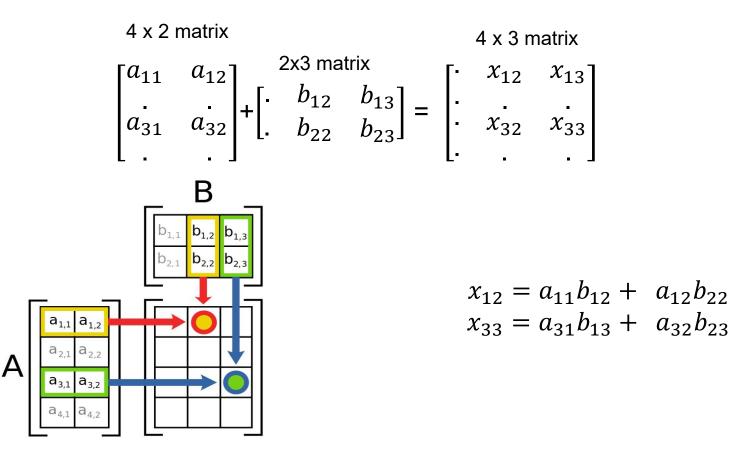
Matrix Addition

- Matrix addition is the operation of adding two matrices by adding the corresponding entries together.
- Two matrices must have an equal number of rows and columns to be added. The sum of two
 matrices A and B will be a matrix, which has the same number of rows and columns as do A and
 B.

$$A + B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

Matrix Multiplication

 Matrix multiplication or matrix product is a binary operation that produces a matrix from two matrices.



Dot Product of Two Vectors

- Given two vectors: $\vec{u} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix} \& \vec{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$
- The dot product of these two vectors is expressed as follows:

$$-\vec{u} \odot \vec{v} = u_x * v_x + u_y * v_y + u_z * v_z = \|\vec{u}\| \|\vec{v}\| \cos\theta$$

- If the two vectors are orthogonal, the dot product is zero.
- If the two vectors are parallel, the dot product reduces to the product of their norms. \vec{u}

Cross Product of Two Vectors

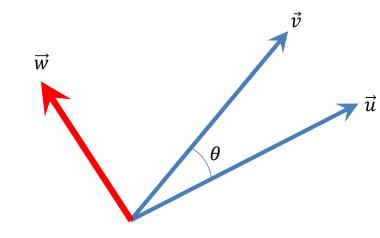
- Given two vectors: $\vec{u} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix} \& \vec{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$
- The cross product of the two vectors is expressed as follows:

 $-\vec{w} = \vec{u} \times \vec{v} = \begin{bmatrix} i & j & k \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{bmatrix} = \begin{bmatrix} u_y v_z - u_z v_y \\ -u_x v_z + u_z v_x \\ u_x v_y - u_y v_x \end{bmatrix}, \text{ where } i, j, and k \text{ are the unit vectors along the x, y,}$

and z axes, respectively.

$$- \vec{w} = \begin{bmatrix} 0 & -u_{z} & u_{y} \\ u_{z} & 0 & -u_{x} \\ -u_{y} & u_{x} & 0 \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix} = \begin{bmatrix} u_{y}v_{z} - u_{z}v_{y} \\ -u_{x}v_{z} + u_{z}v_{x} \\ u_{x}v_{y} - u_{y}v_{x} \end{bmatrix} = \hat{\vec{u}} \vec{v}$$
$$- \vec{w} = \begin{bmatrix} 0 & v_{z} & -v_{y} \\ -v_{z} & 0 & v_{x} \\ v_{y} & -v_{x} & 0 \end{bmatrix} \begin{bmatrix} u_{x} \\ u_{y} \\ u_{z} \end{bmatrix} = \begin{bmatrix} u_{y}v_{z} - u_{z}v_{y} \\ -u_{x}v_{z} + u_{z}v_{x} \\ u_{x}v_{y} - u_{y}v_{x} \end{bmatrix} = \hat{\vec{v}}^{T} \vec{u}$$
$$- \|\vec{w}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta$$

 $-\vec{w} \perp \vec{u} \& \vec{w} \perp \vec{v}$



PURDUE

Vector Connecting Two Points

• Given two points in 3D space, which are defined by the following vectors (\vec{A} and \vec{B}):

$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \text{ and } \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix},$$

• Then, the vector connecting the two points will be defined as:

$$\overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A} = \begin{bmatrix} b_x - a_x \\ b_y - a_y \\ b_z - a_z \end{bmatrix}$$

$$\overrightarrow{AB}$$

$$\overrightarrow{AB}$$

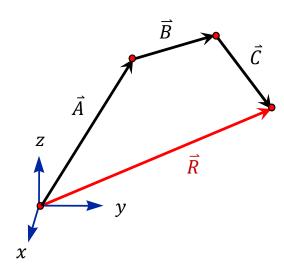
$$A(a_x, a_y, a_z)$$

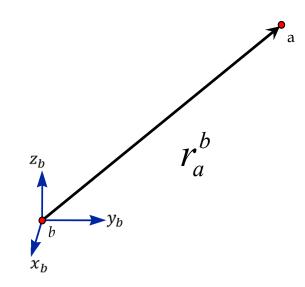
CE 597

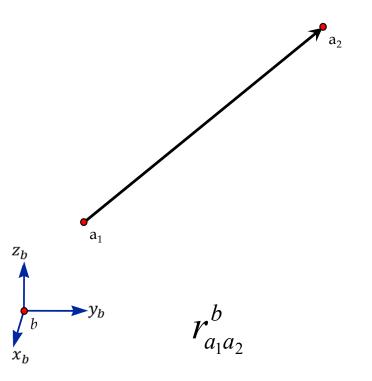
Resultant and Vector Summation

- The resultant is the vector sum of two or more vectors.
- It is the result of adding two or more vectors together.
- If displacement vectors \vec{A} , \vec{B} , and \vec{C} are added together, the result will be vector \vec{R} .

$$\vec{R} = \vec{A} + \vec{B} + \vec{C} = \begin{bmatrix} a_x + b_x + c_x \\ a_y + b_y + c_y \\ a_z + b_z + c_z \end{bmatrix}$$



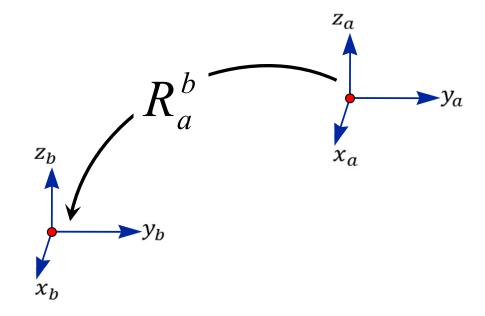




Rotation Matrices

- In Photogrammetry, we are dealing with two distinct coordinate systems:
 - Camera coordinate systems, and
 - Mapping coordinate systems.
- The camera and mapping coordinate systems are not necessarily parallel.
- The derivation of the collinearity equations would require the summation of vectors related to the camera and mapping coordinate systems.
- Vectors summation/subtraction cannot be performed unless they are represented relative to the same coordinate systems.
- Vectors represented in different coordinate systems can be transformed to common coordinate system using a rotation matrix.
- Therefore, we need to establish the rotation matrix relating the camera and mapping coordinate systems.

Rotation Matrix Notations



15

Collinearity Equations

 $R = R_c^m$

$$x_a = x_p - c \frac{r_{11}(X_A - X_o) + r_{21}(Y_A - Y_o) + r_{11}(Z_A - Z_o)}{r_{13}(X_A - X_o) + r_{23}(Y_A - Y_o) + r_{33}(Z_A - Z_o)} + dist_x$$

$$y_a = y_p - c \frac{r_{12}(X_A - X_o) + r_{22}(Y_A - Y_o) + r_{32}(Z_A - Z_o)}{r_{13}(X_A - X_o) + r_{23}(Y_A - Y_o) + r_{33}(Z_A - Z_o)} + dist_y$$

Involved parameters:

- Image coordinates (x_a, y_a)
- Ground coordinates (A_A, Y_A, Z_A)
- Exterior Orientation Parameters EOPs (X_0 , Y_0 , Z_0 , ω , ϕ , κ)
- Interior Orientation Parameters IOPs (x_p, y_p, c, and the coefficients describing dist_x and dist_y)

CE 203 (III)

Collinearity Equations

 In the collinearity equations, the observed image coordinates are expressed as nonlinear function of the:

- Ground coordinates (A_A, Y_A, Z_A) ,
- Exterior Orientation Parameters EOP (X_O , Y_O , Z_O , ω , ϕ , κ), and
- Interior Orientation Parameters IOP (x_p , y_p , c, and the coefficients describing $dist_x$ and $dist_y$).
- One should note that the rotation angles ω, φ, κ are those that need to be applied to the X, Y, and Z-axes, respectively, of the mapping coordinate system to make it parallel to the camera coordinate system.
- Bundle Adjustment is an approach used to solve for the ground coordinates of tie points, EOP of the images, and IOP of the used camera(s).
- BASC (Bundle Adjustment with Self Calibration) is provided to solve for such parameters (ground coordinates of tie points, EOP of the images, and IOP of the used camera).

