ABSTRACT

Human-centered daylighting design and operation aim to ensure visual comfort, support
perceptual delight (visual preferences), and deliver health benefits (non-visual effects) by
accounting for the underlying biological mechanisms and the correlations between psycho-
physiological responses and environmental factors. Energy considerations are secondary in
human-centered daylighting operation; with proper window and shading selections during the
design stage, energy efficiency can be largely optimized in advance. With emerging techniques
and devices, this Thesis aims to explore new opportunities to address research gaps across multiple
aspects of human-centered daylighting. Using modeling and experimental methods, the work spans
from the selection of realistic window and roller shade properties to the investigation of
computational methods for assessing visual discomfort, the exploration of non-intrusive luminance
monitoring using small low-cost sensors and deep learning, and the validation of non-invasive
daylighting preference evaluation. This work is the first to demonstrate that daylight preferences
can be learned non-invasively by employing the full potential of HDRI and deep learning
techniques.

First, this Thesis proposes a simulation-based optimization workflow (integrating
EnergyPlus with a genetic algorithm) to select optimal window properties which can be mapped
to existing products. A tree-type optimization design space is built upon an existing glass library
to dynamically constrain the correlations of glazing properties and to ensure that optimal solutions
correspond to real products. Optimizations are performed to select glazing and window system
solar-optical properties that minimize site energy use in south zones (with and without interior
shades) or north zones of a typical medium-size office across different US climates. The results
yield climate-specific recommendations for selecting energy-efficient window products.

Second, this Thesis presents a measurement-aided modeling workflow for selecting roller
shade properties that can significantly reduce the risk of glare, using limited BSDF data. The
workflow integrates detailed daylight modeling (Radiance 5-Phase Method (5PM)) and light
transmission models through roller shades (Radiance aBSDF with PE), a revised analytical
transmission model using limited BSDF data, and a process for refining upper bounds of
recommended properties. Radiance 5PM is selected to estimate annual visual discomfort

frequency because its results are in a good agreement with the ground-truth ray-tracing tool rpict.



The annual visual discomfort frequency, computed from hourly image-based daylight glare
probability (DGP) analysis through the year, is parameterized by shade properties listed by
manufacturers (openness factor and total visible transmittance). Recommended upper bounds of
shade properties are graphically presented in openness-transmittance 2-D charts, for different
locations, orientations and view directions, for dark, medium and light-colored shades in each case.

The final part of this Thesis establishes a basis for future studies to assess the effect of
visual environment on human perception using non-intrusive measurements. It provides a
theoretical justification to support the feasibility of using a non-intrusive camera to learn personal
daylight preferences using deep learning, and validates this feasibility through experiments with
human subjects. The justification is provided by demonstrating that luminance information is
consistent and transferable between occupants’ field of view (FOV) and non-intrusive viewpoints.
A Conditional Generative Adversarial Network (CGAN), pix2pix is used to predict FOV
luminance maps based on images captured by a wall- or monitor-mounted camera. The results
show that the predicted FOV images closely match the measured ones in terms of luminance errors
and structural similarity. Then, experiments with human subjects were conducted in an open-plan
office. The method of pairwise comparative preference learning is applied to minimize biases in
subjective assessments; subjects compared consecutive visual conditions in pairs and indicated
their visual preferences. Meanwhile, ten small and calibrated High Dynamic Range Image (HDRI)
cameras captured luminance maps from both the FOV of each subject and non-intrusive
viewpoints (on Monitor, Ceiling, and Desk) under various sky conditions. Convolutional Neural
Network (CNN) models were trained to predict which of the two visual conditions an occupant
would more likely prefer by comparing these two conditions using luminance similarity index
maps (which quantify differences between two consecutive luminance maps in terms of magnitude
and direction changes). The CNN models trained on the luminance information collected from the
FOV, Monitor-mounted, and Ceiling-mounted camera demonstrated consistent accuracy across all
subjects. The results support that non-intrusive cameras can effectively replace intrusive
measurements for visual preference learning, marking a significant milestone towards practical

human-centered daylighting control.



