
ABSTRACT 

Human-centered daylighting design and operation aim to ensure visual comfort, support 

perceptual delight (visual preferences), and deliver health benefits (non-visual effects) by 

accounting for the underlying biological mechanisms and the correlations between psycho-

physiological responses and environmental factors. Energy considerations are secondary in 

human-centered daylighting operation; with proper window and shading selections during the 

design stage, energy efficiency can be largely optimized in advance. With emerging techniques 

and devices, this Thesis aims to explore new opportunities to address research gaps across multiple 

aspects of human-centered daylighting. Using modeling and experimental methods, the work spans 

from the selection of realistic window and roller shade properties to the investigation of 

computational methods for assessing visual discomfort, the exploration of non-intrusive luminance 

monitoring using small low-cost sensors and deep learning, and the validation of non-invasive 

daylighting preference evaluation. This work is the first to demonstrate that daylight preferences 

can be learned non-invasively by employing the full potential of HDRI and deep learning 

techniques. 

First, this Thesis proposes a simulation-based optimization workflow (integrating 

EnergyPlus with a genetic algorithm) to select optimal window properties which can be mapped 

to existing products. A tree-type optimization design space is built upon an existing glass library 

to dynamically constrain the correlations of glazing properties and to ensure that optimal solutions 

correspond to real products. Optimizations are performed to select glazing and window system 

solar-optical properties that minimize site energy use in south zones (with and without interior 

shades) or north zones of a typical medium-size office across different US climates. The results 

yield climate-specific recommendations for selecting energy-efficient window products. 

Second, this Thesis presents a measurement-aided modeling workflow for selecting roller 

shade properties that can significantly reduce the risk of glare, using limited BSDF data. The 

workflow integrates detailed daylight modeling (Radiance 5-Phase Method (5PM)) and light 

transmission models through roller shades (Radiance aBSDF with PE), a revised analytical 

transmission model using limited BSDF data, and a process for refining upper bounds of 

recommended properties. Radiance 5PM is selected to estimate annual visual discomfort 

frequency because its results are in a good agreement with the ground-truth ray-tracing tool rpict. 



The annual visual discomfort frequency, computed from hourly image-based daylight glare 

probability (DGP) analysis through the year, is parameterized by shade properties listed by 

manufacturers (openness factor and total visible transmittance). Recommended upper bounds of 

shade properties are graphically presented in openness-transmittance 2-D charts, for different 

locations, orientations and view directions, for dark, medium and light-colored shades in each case. 

The final part of this Thesis establishes a basis for future studies to assess the effect of 

visual environment on human perception using non-intrusive measurements. It provides a 

theoretical justification to support the feasibility of using a non-intrusive camera to learn personal 

daylight preferences using deep learning, and validates this feasibility through experiments with 

human subjects. The justification is provided by demonstrating that luminance information is 

consistent and transferable between occupants’ field of view (FOV) and non-intrusive viewpoints. 

A Conditional Generative Adversarial Network (CGAN), pix2pix is used to predict FOV 

luminance maps based on images captured by a wall- or monitor-mounted camera. The results 

show that the predicted FOV images closely match the measured ones in terms of luminance errors 

and structural similarity. Then, experiments with human subjects were conducted in an open-plan 

office. The method of pairwise comparative preference learning is applied to minimize biases in 

subjective assessments; subjects compared consecutive visual conditions in pairs and indicated 

their visual preferences. Meanwhile, ten small and calibrated High Dynamic Range Image (HDRI) 

cameras captured luminance maps from both the FOV of each subject and non-intrusive 

viewpoints (on Monitor, Ceiling, and Desk) under various sky conditions. Convolutional Neural 

Network (CNN) models were trained to predict which of the two visual conditions an occupant 

would more likely prefer by comparing these two conditions using luminance similarity index 

maps (which quantify differences between two consecutive luminance maps in terms of magnitude 

and direction changes). The CNN models trained on the luminance information collected from the 

FOV, Monitor-mounted, and Ceiling-mounted camera demonstrated consistent accuracy across all 

subjects. The results support that non-intrusive cameras can effectively replace intrusive 

measurements for visual preference learning, marking a significant milestone towards practical 

human-centered daylighting control.  

  


