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The rapid evolution of transportation systems toward the integration of Connected and Autonomous Vehicles

(CAVs) is reshaping the landscape of urban mobility. CAVs promise significant enhancements in traffic efficiency,

safety, and environmental sustainability. By enabling vehicles to communicate with each other and with infrastruc-

ture, CAV technology has the potential to optimize traffic flow, reduce congestion, and minimize accidents caused

by human error. However, the transition from traditional human-driven vehicles to CAVs introduces complex

challenges in modeling traffic dynamics and ensuring the cybersecurity of transportation networks.

Accurate traffic modeling is critical for the efficient management of road networks and the development of

strategies to mitigate congestion and other traffic-related issues. Traditional traffic models often rely on simplified

assumptions that may not capture the intricate dynamics of modern traffic systems, especially with the advent

of CAVs. These models may fall short in accounting for the interactions between vehicles, variability in traffic

patterns, and the impact of external factors such as cyber threats.

The increasing reliance on digital technologies and communication systems in CAVs raises concerns about

potential cybersecurity vulnerabilities. Cyber threats, such as Route Guidance Attacks (RGAs), pose significant

risks to the stability and efficiency of traffic networks. Attackers can manipulate route guidance systems, leading to

increased congestion, longer travel times, and gridlock situations. There is a pressing need for advanced modeling

techniques that can accurately represent traffic dynamics in the context of CAVs and for strategies that can detect,

analyze, and mitigate the effects of cyber threats on transportation systems.

This dissertation develops a physics-informed deep learning framework for network-level traffic state estima-

tion and for analyzing, attacking, and hardening urban traffic systems under cyber threats. It progresses from

model construction to adversarial manipulation, network-level impact assessment with behavioral heterogeneity,

and defense design. The main contributions are:

1. Physics-Informed Machine Learning of the Generalized Bathtub Model (PIML-GBM): A hybrid learning

framework that calibrates and evolves the generalized bathtub model on large urban networks with mobile

location–based data. The approach estimates and forecasts trip volumes and network states with physics-guided

regularization, learns network parameters directly from data, and represents traffic dynamics over continuous

time–distance fields for city-scale inference and prediction.

2. Adaptive Spatial–Temporal Domain Decomposition in Physics-Informed Neural Networks (Ada-STDPINN):
A physics-informed neural architecture that partitions the space–time domain to capture localized, rapidly vary-

ing traffic phenomena while preserving global conservation laws. It introduces adaptive error control across

subdomains and interfaces, and demonstrates superior accuracy and generalization to classical PINNs and

data-driven baselines on real networks.
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3. Bounded-Rational Route Guidance Attacks on Urban Navigation Systems: A threat model and attack

generator (e.g., PhantNav) that manipulates route suggestions while explicitly modeling travelers’ bounded

rationality and tolerance for suboptimality. The framework optimizes attack objectives subject to behavioral

and platform constraints, and shows that accounting for heterogeneous compliance produces stronger and more

realistic disruptions than perfect-compliance assumptions.

4. Driver Behavior–Aware Resilience of Traffic Networks under Route Guidance Attacks: An integrated be-

havior–traffic modeling and experimental analysis that quantifies how user heterogeneity shapes network-level

outcomes under attacks. The study identifies regimes where heterogeneity buffers congestion growth and delays

collapse, thresholds where attack intensity overwhelms these benefits, and trade-offs between peak severity and

recovery dynamics at the city scale.

5. Physics-Informed Neural Networks via Adversarial Training under Sensor Attacks: A defense framework

that hardens PINN-based estimators against corrupted sensing. It combines adversarial training with worst-case

sensor perturbations, a confidence-weighted robust loss that down-weights outliers, and a physics-guided anomaly

filter that suppresses inconsistent observations. The result is materially improved robustness and stable recon-

struction of traffic states under malicious noise.

The overarching goal is to enhance CAV traffic network resilience against cyber threats through advanced

modeling and mitigation techniques. This cohesive approach contributes to safer, more efficient transportation

systems and paves the way for integrating autonomous vehicle technology into daily life.

Chapter 2: Physics-Informed Machine Learning of Generalized Bathtub Model
Chapter 2 introduces the PIML-GBM, an innovative hybrid model that effectively combines physical traffic

flow models with machine learning techniques. By leveraging the strengths of both approaches, the model enhances

the accuracy and interpretability of traffic state estimations (traditional model’s RMSE: 0.4748; PIML-GBM’s

RMSE: 0.0533). Validation with comprehensive road network data from Indianapolis demonstrates its applicability

and effectiveness. This foundational work is crucial for transitioning to CAV traffic modeling, providing the

baseline upon which subsequent chapters build.

Chapter 3: Adaptive Spatio-Temporal Decomposition-Based Physics-Informed Neural Network of Traf-
fic Flow Models

Building upon the foundational model in Chapter 2, Chapter 3 introduces the Adaptive Spatio-Temporal De-

composition Physics-Informed Neural Network (AdaSTDPINN). This framework tackles the challenge of captur-

ing localized traffic variations and abrupt changes by dividing the spatial-temporal domain into smaller, overlap-

ping subdomains. The method ensures smooth transitions between subdomains through weighted neural network

combinations, significantly enhancing the accuracy of traffic dynamics analysis. Validation studies using real-

world traffic data demonstrate substantial improvements in both accuracy and computational efficiency over global

domain models. This advancement is critical for analyzing large, complex urban networks and sets the stage for

modeling scenarios involving disruptions such as cyber attacks.

Chapter 4: Route Guidance Attack Modeling with Bounded Rationality
Chapter 4 leverages the advanced modeling techniques from Chapters 2 and 3 to focus on the development of

RGAs. It introduces a mathematical framework that models how travelers perceive and respond to manipulated

route suggestions, taking into account their cognitive limitations and tolerance for suboptimal routes through an

indifference band. An algorithm strategically adjusts suggested routes in real-time to increase travel time while
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keeping changes subtle enough to remain within the traveler’s indifference band. Simulations conducted in de-

tailed urban traffic networks demonstrate how incorporating bounded rationality leads to more effective attack

strategies, resulting in higher compliance rates and greater disruption potential. This development marks a signifi-

cant advancement in understanding the mechanisms of RGAs and their real-world implications for transportation

cybersecurity.

Chapter 5: Driver Behavior–Aware Resilience of Traffic Networks under Route Guidance Attacks
Chapter 5 advances the dissertation by modeling how route guidance attacks reshape city-scale traffic when

drivers respond in heterogeneous ways. It fuses a generalized bathtub traffic model with three route-choice for-

mulations—perfect rationality, logit-based stochastic choice, and bounded rationality—to propagate manipulated

guidance into network accumulation, delay, and recovery. The threat model specifies attack intensity and distortion

of perceived travel times, which alters realized trip lengths and feeds the macroscopic flow dynamics. Controlled

experiments quantify peak congestion, time to recovery, total delay, and a resilience index across behavior regimes.

Results show that behavioral diversity mitigates early cascades, lowers peak accumulation, and accelerates recov-

ery under moderate attacks, while extreme attacks erode these gains and drive convergence of outcomes. The

analysis also reveals an informational Braess effect: aggressive compliance with guidance can steer the network

toward a worse equilibrium. The chapter contributes a behavior-aware simulation framework and threshold char-

acterizations that link attack intensity and user heterogeneity to network vulnerability, offering actionable levers

for resilient operations.

Chapter 6: Physics-Informed Neural Networks via Adversarial Training under Sensor Attacks
Chapter 6 develops a detection and mitigation approach for falsified traffic measurements by extending adap-

tive spatio-temporal domain-decomposed physics-informed neural networks. The method augments training with

bounded adversarial perturbations and scripted attack scenarios, applies a robust Huber data loss with confidence

weighting at each sensor, and performs residual-based anomaly detection and masking so that corrupted inputs

do not dominate learning. The framework preserves conservation laws and interface compatibility by shifting

trust from compromised data to governing physics during attacks. Evaluations on high-resolution highway data

compare against conventional data-driven and standard PINN baselines using root-mean-square, demonstrating

improved state estimation under targeted falsification while maintaining low false positives on genuine congestion.

The chapter delivers a practical blueprint for securing traffic state estimation pipelines: it detects sensor attacks,

contains their impact during training and inference, and maintains physically consistent reconstructions needed for

resilient network management.

Each chapter builds upon the previous ones, ensuring a seamless transition from foundational concepts to

advanced applications:

• Chapter 2 to Chapter 3: Chapter 2 establishes the PIML-GBM for traffic state estimation. Chapter 3 introduces

AdaSTDPINN-TFM to address its limitations by capturing localized traffic variations, enhancing modeling ca-

pabilities for complexities in later chapters.

• Chapter 3 to Chapter 4: The advanced modeling from Chapter 3 enables precise traffic dynamics modeling

essential for developing effective RGAs in Chapter 4, facilitating understanding and exploitation of traveler

behavior.

• Chapter 4 to Chapter 5: Chapter 4’s attack strategies provide context for Chapter 5’s analysis of network

failures and recovery, assessing the impact of cyber threats using prior models.
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• Chapter 5 to Chapter 6: Insights into vulnerabilities from Chapter 5 inform the mitigation strategies in Chapter

6, crucial for designing effective detection and response mechanisms.

This dissertation presents a cohesive and comprehensive approach to enhancing the resilience of network traffic

dynamics in CAVs against cyber threats. By integrating theoretical models with practical applications, the research

contributes significantly to the development of safer, more efficient transportation systems. The progression from

foundational modeling techniques to advanced attack strategies and mitigation measures exemplifies how each

chapter synergizes with and supplements the others. This holistic approach ensures that the findings are robust,

applicable, and valuable for the future integration of autonomous vehicle technology into daily life.
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