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In semi-discrete methods for solving partial differential equations (PDEs), direct time integration 

schemes are widely used to obtain fully discrete equations from ordinary differential equations 

(ODEs). Time integration can be categorized into implicit and explicit schemes. For nonlinear 

problems, implicit-explicit (IMEX) schemes have been proposed to achieve a lower 

computational cost than fully implicit schemes, while leading to a larger stability range than fully 

explicit schemes. In IMEX schemes, linear terms are handled implicitly and nonlinear terms are 

treated explicitly, eliminating the need for nonlinear iterations at each time step. 

In conventional time integration schemes, a uniform time step is used for the entire problem 

domain. However, for large structures with complex geometries, wave propagation problems in 

heterogeneous media, and computational fluid dynamics (CFD), the use of a uniform time step 

leads to a high computational cost and/or yields less accurate numerical solutions. As an 

alternative, we can use multi-time-step (MTS) methods, where different time steps are used for 

temporal discretizations for different subdomain.  

In this study, novel MTS methods for various types of time integration schemes (e.g. explicit, 

implicit, and IMEX schemes) in fluid dynamics and transient structural mechanics are developed 

using a dual-Schur domain decomposition, where constraint conditions are imposed at the 

subdomain interfaces using Lagrange multipliers. Using these methods, a problem domain can be 

divided into smaller subdomains which are integrated in time using different time steps and/or 

different time integration schemes to achieve accurate solutions at low computational cost. 

Furthermore, the machine learning approach is incorporated into MTS methods to streamline the 

computationally intensive process of conventional MTS methods to accelerate simulations. 

First, we introduce a scalar auxiliary variable (SAV) stabilization of IMEX kth-order backward 

difference formulas (BDFk) schemes for nonlinear structural dynamics. The proposed IMEX-

BDFk-SAV schemes achieve up to kth-order accuracy, while maintaining unconditional energy 

stability, eliminating the need for nonlinear iterations at each time step. Extending the stable 

IMEX schemes, we develop a MTS-IMEX-SAV method in conjunction with a non-overlapping 

domain decomposition for solving incompressible Navier-Stokes equations. The proposed 

IMEX-IMEX-SAV method is unconditionally stable and involves only linear algebraic systems, 

reducing computational costs. 



Next, to tackle the challenge of simulating stiff-flexible structural systems, we propose, for the 

first time, a MTS method for composite time integration schemes. We prove its unconditional 

stability analytically and demonstrate its superior performance compared to existing MTS 

methods. Furthermore, to overcome a critical limitation of existing MTS methods (i.e. drift in 

displacements), a unified MTS framework with SAV stabilization is developed to enable 

simultaneous enforcement of multiple continuity constraints. Using the framework, new MTS 

methods are designed to eliminate the drift in displacements. 

Finally, to streamline the computationally intensive 3-step process of MTS methods, we 

incorporate the machine learning (ML) approach into MTS methods. In the proposed ML-

assisted MTS method, a recurrent neural network predicts the time series of Lagrange multipliers 

needed to couple the subdomains. The predicted Lagrange multipliers are used to advance the 

subdomain solutions using conventional time integration schemes, enabling coupling of 

subdomains in a single pass. The performance of this ML-assisted approach is compared to 

existing MTS methods in terms of accuracy and computational costs. 


