Lecture 2 Ionization Methods : Electron Ionization

Ionization Methods : Time Line

Four Main Types of Ionization Methods in Molecular Mass Spectrometry

☆	El (Electron Ionization)	Energetic electrons	Vapors	El	
	CI (Chemical Ionization)	Gas phase ions	Vapors	APCI	Samp
	SI (Spray Ionization)	Electric field, nebulizing gas	Solutions	ESI	Sam
	DI (Desorption Ionization)	Energetic particles, photons	Solids	MALDI SIMS	Vacu

Electron Ionization (EI)

Many events possible in an electron-neutral collision		
Excitation	e^{-} + A-B-C = A-B-C [*] + e^{-} (not	
	detected)	
Electron capture	e ⁻ + A-B-C = A-B-C ⁻ (rare,	
	resonance)	
Electron ionization	e ⁻ + A-B-C = A-B-C ⁺ + 2e ⁻	
Ionization with excitation of ion	e^{-} + A-B-C \rightarrow A-B-C $^{+*}$ \rightarrow A + B-C $^{+-}$	
leading to fragmentation	$\rightarrow A^{+} + B - C^{+}$	
(simple cleavage and/or	$\rightarrow A^{+} + B-C$	
rearrangement)	\rightarrow A-C ⁺⁻ + B	
	etc.	
Multiple Ionization (w/ or w/o	e ⁻ + A-B-C = A-B-C ²⁺ + 3e ⁻	
excitation, dissociation,		
rearrangement, etc.)		

Gross, J. H. *Mass Spectrometry,* Springer: New York, 2004; de Hoffmann, E.; Stroobant, V. Mass Spectrometry: Principles and Applications, 2nd Ed; Wiley: New York, 2004.

El Source

Developed by Nier in late 1930's **Filament current:** 1 - 2 A (thermionic electron emission from Rh at 2000K) **Electron emission current:** 10 - 100 mA **Trap (anode) current:** 10^{-4} A (control by feedback for quantitation) **Ion current:** $10^{-8} - 10^{-9}$ A **Electron energy:** 70eV (down to 5 eV). Max. efficiency, indep of Eel **Sample pressure:** ca 2 x 10^{-5} torr (pressure, < 10^{-6} torr) **Filament temperature:** 1800C **Source temperature:** 200C (higher or lower if desired) path length is 1 cm Tunical electron gurrent: 1

Fundamentals of EI

Lonization Efficiency (vield) Typically given in Coulombs/µgram eg. $3x10^{-7}$ C/µg methyl stearate MW=300 g/mol $1µg = 1/300 \times 10^{-6}$ mol = $3.3 \times 10^{-9} \times 6$ $x10^{23}$ molecules= 1.8×10^{15} molecules But 1 mol can theoretically give 1.6×10^{-19} C(Faraday) and 1µg can give $1.8 \times 10^{15} \times 1.6 \times 10^{-19}$ C = $3x10^{-4}$ C **yield is** $3x10^{-7}/3x10^{-4} = 0.1\%$ **Cross section:** Target area per molecule (cm²/molecule) Typical value: 2×10^{-16} cm²/molecule Typical pressure: 2×10^{-5} torr

Pressure: 1 torr = 133 Pascal = 1 mm Hg = So 2×10^{-5} torr = 6.4 x 10^{14} molecules/cm³ path length is 1 cm Typical electron current: 10 nA Total area presented by all molecules in 1 cc volume is: $2 \times 10^{-16} \times 6.4 \times 10^{14} = 1.28 \times 10^{-1} \text{ cm}^2$ But each electron is randomly placed in a 1 cm² area so chance of ionizing collision per e⁻ is 12.8% 1 electron s⁻¹ = 1.60 x 10⁻¹⁹A, so 10 nA equals 1/1.6 x 10¹¹ electrons/sec = 6 x 10¹⁰ electrons/sec

 $[1.33 \text{ mbar} = 3.2 \text{ x}10^{19} \text{ molecules cm}^3]$

Fundamentals of El cont..

Time Scale

Electrons travel very quickly	, h h
compared to nuclei (i.e. vibrations)	$\lambda = \frac{1}{\left(2m_{*}eV\right)^{\frac{1}{2}}} = \frac{1}{mv}$
How much faster? Use de Broglie	6.626×10 ⁻³⁴ Js
wavelength	$\lambda = \frac{1}{(2 - 2 + 2)^{3/4}}$
 70 eV electrons have 	$(2 \times 9.109 \times 10^{-7} \text{ Kg} \times 1.609 \times 10^{-7} \text{ C} \times 70^{-7} \text{ V})^{-2}$
wavelength of 4.6 x 10 ⁻⁹ m	m²ko A m²ko
• What is wavelength of	$1 J = 1 Nm = 1 \frac{m Rs}{2}$, $1 C = 1 \frac{m}{2}$, $1 V = \frac{m Rs}{3}$
molecular motion at room	S S S A
temp?	m²kg m²kg
 think vibrations: 	$\frac{1}{8} = \frac{1}{8} = \frac{1}$
think IR $\approx 3000 \text{ cm}^{-1}$	$\lambda = 4.6 \times 10$ $\frac{1}{(m^{2} lra)^{\frac{1}{2}}} = \frac{1}{(m^{2} lra^{2})^{\frac{1}{2}}}$
$-3.3 \ \mu m = 3.3 \ x \ 10^{-6} \ m$	$\left kg \times A \times s \times \frac{m kg}{2} \right = \left \frac{m kg}{2} \right $
(at least three orders	(° s'A) (s')
of magnitude	m²kg
longer)	<u></u>
Therefore, quantum	$\lambda = 4.6 \times 10^{-9} \frac{s}{m \ln n} = m$
mechanics tells us that	mkg
energy transfer is less	S
probable (energy transfer	or 2×10^{-17} s
occurs when waveforms	$an 6 \times 10^{16}$ Hz
overlap).	01 0×10 HZ
Frank-Condon factors will	
apply » electrons will be	
excited/ejected must faster	
than the time frame for	
molecular rearrangement.	
• This <i>could</i> impart internal	
energy into the newly	
formed ions.	

Vertical transitions: Franck-Condon Principle

A 70 eV electron has velocity $5 \ge 10^8$ cm/s Hence a 10 Å molecule is traversed in $2 \ge 10^{-16}$ s But the vibrational period is $10^{-11} - 10^{-13}$ s hence El occurs by vertical, Franck-Condon transitions, nuclear motion is frozen

Internal energy distributions P(ε)

Ions do not have thermal (Boltzmann) distributions in EI. IONS ARE ISOLATED – no collisions, no energy loss. The most probable events are the <u>least</u> inelastic. Hence the - probability of transferring energy to the ion decreases with increasing energy. However, the number of states available increases and the net result is an internal energy distribution [P(e)] curve of the type shown below:

Lambert et al. Chapter 14 Fragmentation and Ion Chemistry

Fragmentation in El Mass Spectra

QET Quasi-equilibrium theory describes unimolecular reactions

1) Energy deposition is faster than intramolecular movement ("vertical ionization")

2) Intermolecular interactions are infrequent compared to intramolecular transitions, and radiationless transitions are favored

3) Excess electron energy has time to distribute to other internal modes before fragmentation

4) Dissociation rates are related to the probability of random energy localizing in a specific way

5) Products containing internal energy may undergo the same steps

What does this mean?

Higher KE electrons can provide

1) faster fragmentation rates

2) more reaction pathways

3) multiple fragmentations

Dissociation rate constants can be determined by QET: [MORE ON THIS LATER!]

$k(E) = v [(E - E_0)/E]^{s-1}$

 $k_{(E)}$ = unimolecular (dissociation) rate constant at internal energy E v = frequency factor (number and density of vibrational states) s = number of degrees of freedom (3N-6 where N = number of atoms) E_0 = dissociation energy

Ionization cross sections

ref. see Levsen ch 1.

The cross section for EI depends on electron energy (E). It maximizes at a few A^2 in the region of 70 eV, rises rapidly before this and falls slowly above this value.

Threshold behavior: at the onset of ionization, the cross section (σ) varies with energy as follows $\sigma(E) \propto (E-E_0)^{n-1}$ ie $\sigma \propto E_{ei}$ for EI E0=thermochemical threshold n=no. electrons ejected E=energy of ionizing agent

This law applies to electron impact, including multiple ionization, photoionization, etc. It is demonstrated by the ionization of xenon up to Xe^{+6} :

Threshold functions for multiple ionization processes in xenon111, interpreted in terms of nth root law Hasted p410

Thermochemical measurements - appearance and ionization energies

Threshold measurements of ionization give I\ionization energies and the threshold for a fragment ion gives the appearance energy. By definition these are the minimum energies required for the reactions:

$$AB \rightarrow AB^{+.} + e^{-} (IE \equiv \Delta H_{rxn})$$
$$AB \rightarrow A^{+} + B^{-} + e^{-} (AE \equiv \Delta H_{rxn})$$

Example C_6H_5 -O-CH₃ \rightarrow C_6H_5 -O-CH₃⁺ + e Ionization (IE) 8.30 eV (1)

`

 C_6H_5 -O-CH₃ \rightarrow C_6H_5 -O⁺ + CH₃ + e⁻ Dissociation (AE) 11.70 eV (2)

 $\Delta H_{reaction} (2) = \Delta H_{f}(C_{6}H_{5}O^{+}) + \Delta H_{f}(CH_{3}) - \Delta H_{f}(C_{6}H_{5}OCH_{3}) = AE - IE \text{ [assumes no excess energy]}$

Knowing IE, AE and knowing $\Delta H_f(C_6H_5OCH_3) = -17$ kcal/mol from WEBBOOK,

We can determine Heat of formation of neutral radical $\Delta H_f(CH_3) = 34$ kcal/mol

[compare standard value, WEBBOOK, $\Delta H_{f gas}^{\circ}$ 35.1 +/- 2 kcal/mol]

$$AE(C_6H_5O^+) = \Delta H_f(C_6H_5O^+) + \Delta H_f(CH_3) - \Delta H_f(C_6H_5OCH_3)$$

$$\therefore \quad \Delta H_f(C_6H_5O^+) = AE(C_6H_5O^+) - \Delta H_f(CH_3^-) + \Delta H_f(C_6H_5OCH_3)$$

=11.70x23.06 - (34) + (-17) = 219 kcal/mol

 $IE(C_6H_5OCH_3) = \Delta H_f(C_6H_5OCH_3^{+}) - \Delta H_f(C_6H_5OCH_3)$

$$\therefore \Delta H_f(C_6H_5OCH_3^{+}) = IE(C_6H_5OCH_3) + \Delta H_f(C_6H_5OCH_3) = 8.30x23.06 + (-17) = 175.6 \text{ kcal/mol}$$

<u>C – O Bond energy in ion: $C_6H_5OCH_3^{\pm}$ </u>

 $BE_{ion} = \Delta H_f(C_6H_5O^+) + \Delta H_f(CH_3^-) - \Delta H_f(C_6H_5OCH_3^{+-}) = 219 + 34 - 175.6 = 77.4 \text{ kcal/mol} \cong 3.3 \text{ eV}$ Compare C-O bond energy in neutral, C6H5OCH3 from WEBBOOK,

 $BE_{neutral} = \Delta H_f(C_6H_5O) + \Delta H_f(CH_3) - \Delta H_f(C_6H_5OCH_3) = 13 + 35 - (-17) = 65 \text{ kcal/mol} \cong 2.8 \text{ eV}$

Adapted from Interpretation of Mass Spectra, O. D. Sparkman & J. T. Watson

Activation/Fragmentation via EI:

Electron Ionization and Excitation:

A)

Figure 13-3 Electron ionization accompanied by different degree of excitation of the molecular ion. Soft ionizing events transfer excess energy to the ionized molecule, which is observed. Harder collisions also occur and give rise to the fragment ions frequently seen in EI mass spectra.

B)

Figure 13-5 Vertical transitions associated with electron ionization $(M \rightarrow M^{+})$ showing deposition of internal energy tin the ion M^{+} . Two ionization events are shown, a soft collision leading to stable M^{+} of relatively low energy (ε_1), and a hard collision leading to high energy molecular ions (ε_2), which rapidly fragment.

Fragmentation: Molecular Effects

Figure 13-4 Contrasting degrees of fragmentation observed in the EI spectra of an aromatic and an alicyclic compound. The former resists dissociation and gives a molecular ion from which the molecular weight (152 Da) is measured. (From P.J. Ausloos, C. Clifton, O.V. Fateev, A.A. Levitsky. S.G. Lias, W.G. Mallard, A. Shamin, and S.E. Stein, NIST/EPA/NIH Mass Spectral Library—Version 1.5, National Institute of Standards and Technology, Gaithersburg, MD [1996].)

NOTE: HARD & SOFT IONIZATION METHODS – DEPEND ON COMPOUND

Fragmentation: Effect of Electron Energy – attempting to make EI "softer"--succeeds but much intensity lost

FIGURE 4-8. Mass spectra of di-n-hexvl ether at 70 and 12 eV

In the case of molecules, ionization to form higher electronic states of the ion can sometimes be seen by upward breaks in the <u>ionization efficiency curve</u>, ie the plot of ion yield against ionizing electron energy: In the idealized case, one has multiple linear segments. In practice, there are distributions due to the electron energy width, the vibrational energy of the neutral, fragmentation onsets, and the failure of the. threshold laws

The fact that breaks in ionization efficiency curves of large molecules are hard, to discern is evident when one considers so simple as a case as CH:

Used for MS Short Course at Tsinghua by R. Graham Cooks, Hao Chen, Zheng Ouyang, Andy Tao, Yu Xia and Lingjun Li

1,2,3, Multiplicity; Z, T, D symmetry; +, - gerade, ungerade

Figure 14-31 Thermochemical factors control EI mass spectrum of acetophenone

<u>LATER: for certain 'thermometer" ions the internal energy distribution P(e) can</u> <u>be read from the mass spectrum</u>

Negative EI:

Typical negative ion EI spectra don't contain much structural info

FIGURE 5-8 Negative and positive mass spectra of anisole (upper reproduced with the permission of the American chemical Society from R. T. Aplin, etc JACS 1965, 87, 3180)

Summary of EI characteristics:

Highly reproducible spectra-- hence libraries of spectra (100,000). No ion/molecule or matrix effects contribute to reproducibility, ie physical rather than chemical processes involved in ionization.

Simple, inexpensive, rugged.

Gas or vapor samples required, otherwise universally applicable. ("in-beam" variant applies to less volatile compounds)

"Hard" ionization method - often does not give molecular ion. (see Table below).

Internal energy distribution broad and poorly characterized, can be reduced by reducing energy of e⁻ and this helps recognize molecular Ions.

Fragmentation interpretable in terms of structure, but radical cations, M⁺, often fragment by complex rearrangements.

Good ion currents, low absolute efficiencies (10^{-3}) .

Themochemical data (AE, IE) by threshold measurements, ie ionization efficiency data. Poor access to negative ions.

Negligible kinetic energies transferred to ions, hence no loss of mass resolution.

Molecular Ion Abundance in EI spectra^a

Relative abundance of M ^{+.} (% of base peak)	100-50	49-6	5-1	<1
Fraction of sample (%)	30	32	8	30

^aA collection of 120 compounds, molecular weight 220. Data from the EPA NIH libbrary of mass spectra

Table 1-3 Characteristics of EI

Characteristic	Consequence
Positive ions formed	Limits applications to some classes of compounds
Sample must be volatile	Limited to compounds, molecular weight <ca.600 da<="" td=""></ca.600>
Relatively energetic (large internal energy) method	Often extensive fragmentation: limits value in molecular weight determination
Reproducible method	Libraries of EI allow compound identification
Extensive fragmentation occurs	Molecule at structure information can be deduced
Ionization efficiency high	Method is very sensitive in 1000 molecules is ionized
Ionization is non-selective	All vaporized molecules can be ionized

Glossary of Terms Used in EI

Molecular ion:	Ion formed by loss (or, rarely, addition) of an electron by the analyte		
Parent ion:	Any ion which fragme	ents to yield a product ion	
Fragmentation patt	ern: Set of reactions l	leading from the molecular ion to fragment ions	
Multiply-charged i	ons:	Ions bearing more than a single charge and having correspondingly reduced mass/charge ratios	
Radical Ion: (odd-	electron ion)	Charged open-shell molecule	
Even-electron ion:		Closed shell or, more rarely, coordinatively unsaturated paired- electron species	