CS Bioinformatics Faculty Candidate Seminar - Feb. 3

Event Date: February 3, 2014
Time: 10:30 a.m.
Location: LWSN 3102 A/B, WL campus
Saket Navlakha, from Carnegie Mellon University will present a seminar entitled "Analyzing and learning from biological networks" on Monday, February 3, at 10:30 a.m. in LWSN 3102 A/B.

ABSTRACT:

Over the last decade, new technological advances have enabled us to deeply probe the inner workings of biological processes, and making sense of this data has raised several computational challenges. This data has also revealed how biological systems make decisions, coordinate responses, and adapt to changing conditions under similar constraints as those faced by large distributed systems. In this talk, I will focus on time-evolving biological networks.

In the first part, I will present methods for reconstructing ancient biological networks that have been long-lost over evolution. I will introduce new optimization problems and algorithms for recovering molecular interactions in ancestral species given only a present-day version of the network. In the second part, I will describe a joint computational-experimental approach to explore how neural networks in the brain form during development. I will discuss how the brain uses a very uncommon and surprising strategy to build networks and how this idea can be used to enhance the design and function of wireless communication networks.

This is joint work with Ziv Bar-Joseph, Alison Barth, Christos Faloutsos, Xin He, and Carl Kingsford.

SPEAKER BIO:

Saket Navlakha is a post-doctoral researcher in the Machine Learning Department at Carnegie Mellon University. He received an A.A. from Simon's Rock College in 2002, a B.S. from Cornell University in 2005, and a Ph.D. in computer science from the University of Maryland College Park in 2010.

His research interests include the design of algorithms for understanding large biological systems and the study of "algorithms in nature". In 2012, he received an F32 post-doctoral fellowship award from the NIH.