Structural and Mechanical Improvements to Bone are Strain Dependent in a Targeted Tibial Loading Model of Young Female C57BL/6 Mice

Alycia G. Berman¹, Creasy A. Clauser¹, Caitlin Wunderlin¹, Max A. Hammond², Joseph M. Wallace^{1,2}

¹Indiana University-Purdue University at Indianapolis, IN; Department of Biomedical Engineering ; ²Purdue University, West Lafayette, IN; Weldon School of Biomedical Engineering

INTRODUCTION

- Rodent models often used to assess bone's adaptive response to loading (running, climbing, targeted loading, etc.)
- Targeted loading provides controlled way to assess bone's response to load
- · Recently, the usage of murine tibial loading has exploded
- Many studies investigate morphological changes, but do not assess mechanical outcomes of the loading

HYPOTHESIS

Mechanical loading will increase bone architecture and improve cortical mechanical properties in a dose-dependent fashion

MATERIALS AND METHODS

Animals

- · Female C57BI6 mice at 8 weeks of age
 - Calibration group (n=5)
 - Low Strain Group (1700 με; n=10)
 - Mid Strain Group (2050 με; n=10)
 - High Strain Group (2400 με; n=10)

Strain Calibration

- Strain gauged anteromedial portion of the tibial mid-diaphysis of the tibiae
- Cyclically loaded (2 Hz) in compression
- Load stepped from 2 to 12 N in 1 N increments

In Vivo Loading

- · Right tibiae loaded
- · Left tibiae served as non-loaded control
- · Loading Bout
 - 4 cvcles at 2 Hz: Hold 3 seconds
 - Repeat 55 times for 220 total cycles
- · Loading Schedule
- 3 days loaded, 1 day rest
- Repeat 3 times for a total of 2 weeks

Microcomputed Tomography (CT)

- 10.2 um resolution
- · Cancellous Analysis (Proximal Metaphysis)
 - Region of interest: 12% of bone length
 - Start at the distal end of the proximal growth plate and extending distally
- Cortical Analysis
 - Standard site at 50% of bone length

Mechanical Testing

- · 4-point bending (9 mm support span; 3 mm loading span)
- Tested in medial-lateral direction with medial surface in tension
- Displacement control at 0.025 mm/sec
- CT images at fracture site used to normalize Force-Displacement into Stress-Strain

Statistical Analysis

- · Repeated measures ANOVA (main effect of loading and strain level)
 - Tukey HSD Post-hoc to examine pairwise difference between strain level
- In the case of interactions:
 - Paired t-tests to evaluate the effect of loading at each of the three strain levels
 - One-way ANOVA to evaluate the effect of strain level in loaded and non-loaded limbs
- Bonferroni correction (α<0.01)

RESULTS AND DISCUSSION

Cortical Architecture (mid-diaphysis)

- Woven bone formation in half of the 2400 με
- Removed from analysis
- Sample size of 2400 με decreased to n=5
- · In non-loaded limbs, no systemic effects
- · Loading resulted in:
 - ↑ Cortical area and thickness
 - ↑ Maximum and minimum principal moments of inertia
- · Loading caused periosteal expansion and endocortical contraction

Cancellous Architecture (proximal methaphysis)

- Loading resulted in:
 - ↑ Percent bone volume

Posterior

- ↑ Trabecular thickness
- ↓ Trabecular separation
- ↓ Trabecular number
- Loading caused fewer, thicker trabeculae resulting in a greater bone volume fraction

Mechanical Properties

- At 2050 με, ↑ ultimate force, ↑ postyield work, ↑ work to failure and ↑ ultimate stress
- No significant effect of load detected at 1700 $\mu\epsilon$ and 2400 $\mu\epsilon$

CONCLUSIONS

- With loading, bone was positively impacted in a dose dependent manner
 - As expected, loading had a positive impact on cortical and cancellous architecture
 - In addition to morphological improvements, loading caused increases in structural- and tissue-level mechanical behavior
- Woven cortical response at the highest load level resulted in increased bone mass, but at the cost of animal discomfort
 - Load at the highest strain level should be avoided

A moderate load level results was largely beneficial in young female mice with respect to both cortical and cancellous structure and cortical mechanical function