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Abstract In this paper, we develop a Lagrangian decomposition based heuris-
tic method for general quadratic binary programs (QBPs) with linear con-
straints. We extend the idea of Lagrangian decomposition by Chardaire and
Sutter (1995) and Billionnet and Soutif (2004) in which the quadratic objec-
tive is converted to a bilinear function by introducing auxiliary variables to
duplicate the original complicating variables in the problem. Instead of us-
ing linear constraints to assure the equity between the two types of decision
variables, we introduce generalized quadratic constraints and relax them with
Lagrangian multipliers. Instead of computing an upper bound for a maximiza-
tion problem, we focus on lower bounding with Lagrangian decomposition
based heuristic. We take advantage of the decomposability presented in the
Lagrangian subproblems to speed up the heuristic and identify one feasible
solution at each iteration of the subgradient optimization procedure. With
numerical studies on several classes of representative QBPs, we investigate
the sensitivity of lower-bounding performance on parameters of the additional
quadratic constraints. We also demonstrate the potentially improved quality
of preprocessing in comparison with the use of a QBP solver.
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1 Introduction
One of the most well-known and studied classes of nonlinear integer optimiza-

tion problems is the maximization of a quadratic 0—-1 function subject to a set
of linear 0—1 constraints:

(PO) : max Zcimi—i-z Z %cijxixj (1)

i=1 i=1 j=1,j#i
S.t. Zaklxi < bk, for k = 1, s, Mg (2)
i=1
xz; € {0,1}, fori =1,...,n, (3)

where ¢;,¢;; € Rfor 1 <4 # j < nand bg,ar; € R for k = 1,...,m and
i=1,...,n. Problem (P0) is typically referred to as a constrained quadratic
binary problem (QBP) [11]. Since for each binary variable 27 = z;, then c¢;;x?
can be rewritten as c;x; with ¢; = ¢;;. Without loss of generality, we also
assume that c;; = ¢;; for any pair (4, j) with ¢ # j.

Many important problems in engineering, physics, chemistry, biology, and
medicine, as well as several other application domains, can be formulated as
QBPs. For example, QBPs have been studied in scheduling [3], solid-state
physics [4, 5], protein design [28], computational biology [18], and epileptic
seizure prediction [26]. In addition, many graph-theoretic problems can be
naturally formulated with QBPs, including well-studied maximum clique and
maximum independent set problems [37]. However, only a small number of
classes of QBPs are known to be polynomially solvable [35, 39]. In general,
QBPs are N P-hard combinatorial optimization problems [11, 36].

For solving general QBPs, we have witnessed the development of various
heuristics and exact solution methods. A large set of exact solution meth-
ods focused on efficient linearization techniques, which shares the concept of
replacing the nonlinear terms with auxiliary variables and including an addi-
tional set of linear constraints accordingly [1, 2, 9, 20, 31, 32]. Another large
set of exact solution methods involved use of semidefinite programming (SDP)
relaxation, which is shown to be equivalent to the Lagrangian dual of the pri-
mal problem in general cases [43]. Combined with cutting plane technique or
branch-and-bound framework, SDP relaxation has been exceedingly beneficial
to solving unconstrained QBPs [7, 25, 40], even for nonconvex QBPs [13, 44].

Additionally, innumerable metaheuristic approaches are designed for solv-
ing QBPs, improving solutions, or speeding up algorithms. Many of them
were problem-specific and mainly focused on unconstrained QBPs [12, 21, 22,
23, 29, 30, 33]. In recent years, several metaheuristics were also proposed for
quadratic assignment problems (QAPs) [16, 38, 41, 42].

Among the articles we have reviewed, few methods aimed at developing
lower-bounding schemes rather than proposing tighter upper bounds with re-
spect to maximization programs, and fewer pursued efficient computation of
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initial feasible solutions for generic problems. Some of the noteworthy arti-
cles are briefly reviewed in the following. First, Ivnescu [27] linked the prob-
lem of maximal flows in a network to the pseudo-Boolean problem by the
minimum-cut theory [17]. Chaillou et al [14] worked on a Lagrangian relax-
ation of quadratic knapsack binary problems (QKBPs) and characterized the
Lagrangian function following [27]. With the characterization, they developed
an algorithm that quickly finds a feasible solution to QKBPs through iterative
variable fixation. Billionnet and Calmels [6] further incorporated the algorithm
with a fill-up and exchange procedure proposed by Gallo et al [19] to improve
the solution. In addition, Gallo et al [19] reported theoretical and compu-
tational results of an upper plane technique for QKBPs, which relaxes the
quadratic objective function with a linear function that has higher values over
the entire feasible region. By solving this relaxed problem, an upper bound
and a feasible solution are obtained. It is worth noting that the application of
these methods may be restricted to QKBPs due to non-negative coefficients
and single constraint. However, the concept of constructing a more amiable
upper plane function to relax the original problem leads us to develop a more
generic scheme for computing initial feasible solutions.

Our scheme was inspired by the idea of making copies of decision vari-
ables and introducing additional constraints to ensure the identity between
each original decision variable and its copies. The most notable method is the
one developed by Chardaire and Sutter [15] for unconstrained QBPs. Subse-
quently, Billionnet et al [10] and Billionnet and Soutif [8] extended their work
to QBKPs. Consider a partition of decision variables X = {x1,...,2,} into p
clusters (p < n) of variables, i.e., X = X; ®...® X, and define Y; = X \ X,.
Let I, and Js be the index sets of variables in X, and Yj, respectively. The
key idea is to introduce an auxiliary decision variable (or say copy variable)
y; that corresponds to each decision variable z; and cluster s, and replace
each term c¢;;x;x; in objective (1) by ¢;;z;y;. Then (P0) can be equivalently
reformulated as:

p n
1 1 s
(Pl) : II;%/X Z Z CT; + Z Z 50¢j$i$j + Z Z §Cijxiyj
s=1 \i€l, 1€ls jel\{i} 1€ls jeJ,s

(4)
s.t. Zakixi—FZagjngbk,k;zl,...,m,s:l,...,p; (5)

i€l JEJs
yjs-:l'j,jEJs,S:l,...,p; (6)
vi,y; €{0,1}, i€ ly, j€Js, s=1,...,p. (7)

Note that an upper bound on (P0) can be obtained via Lagrangian relaxation
of (P1) by dualizing constraints (6), though that z and y variables are not
completely decomposable in computation of the Lagrangian dual.

In our scheme, we propose an alternative Lagrangian dual problem, where
we still introduce copy variable y; for each pair (4,7), ¢ # j, to replace
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cijTix; terms in the objective function with cija:iyj-, but generate parame-
terized quadratic constraints instead of linear constraints (6). The equivalence
between our proposed formulation and (P0) can be established by certain spec-
ification of the parameters in those quadratic constraints. More importantly, in
contrast to the approach described above, the computation of our Lagrangian
dual problem can be decomposed into solving n unconstrained linear binary
programs that only involves decision variables y and one constrained linear
binary program involving only decision variables z. By solving the subprob-
lems, we can efficiently obtain a set of promising feasible solutions, which is
expected to shorten the searching process in a branch-and-bound procedure.

2 Main Results
2.1 An Alternative Reformulation of (P0)

Consider the following general quadratic binary problem:

n n
1 .
(P2) : max Z T + Z icij:ciy;- (8)
Y= j=1j

n
s.t. Zam’xi <b,, k=1,....m (9)

i=1
afjmiy§ +,6’fjxjyg —|—05jxi +vfjxj > efj, hi=1,...,ni<j, £=1,...,7y
_ (10)
xuyge{oal}a Z»jzl,an,l#] (11)

In (P2), auxiliary binary variables yj are introduced to pair with z; for

every j (# 4); hence, for each z;, there are n — 1 auxiliary variables yf intro-
duced. In addition, no additional linear constraints is proposed to link x and
y but r sets of parameterized quadratic constraints for each pair (¢,7) with
i < j. Regarding the number of constraints in (10), 7;; can be any value of
our choice under certain condition, which is stated more clearly in Section 2.3.
Note that (8) is identical to (1) and equivalent to (4).

Knowing the equivalence between (P0) and (P1), in the following we show
that the equivalence between (P1) and (P2) can be established as long as
certain relationships between the parameters («, 3,0,7v,€) are satisfied. For
convenience of the exposition, we use shorthand notation (z,y) to denote
(15 Ty Yas oo U, oy, oo y™_ 1) in the discussion below. Let

A= {(z,y) € {0,1}" x {0,130V | (5) — (7)}

be the feasible solution region of (P1) and

B(e, B,0,7,€) = {(z,y) € {0,1}" x {0,1}"""D | (9) — (11)}
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be the feasible solution region of (P2) parameterized on a = (wy;),5 =
(Bij),0 = (0i;),7 = (i;), and € := (€;;). For notational simplicity, we use
B instead of B(aq, ,0,7,¢) when referring to a parameterized feasible solu-
tion region of (P2). The parameters are always specified when making such a
reference. We also divide the set of all possible combinations of the decision
variables (x4, 2;,y7,y5) € {0,1}* into the following subsets:

C1 :{(1’1717 )7 (1’05170)7 (0’1’071)7 (0,0,0,0)},
Cy ={(1,0,0,0), (0,1,0,0), (0,0,0,1), (0,0,1,0), (0,0,1,1)},
C3 = {0,1}*\(C1 U Cy).

To ensure the equivalence between (P1) and (P2), we essentially need to show
that A C B and no feasible solution to (P2) is from Cj.

Proposition 1 If for all ¢ =1,...,7;; and for all (i,7), wherei,j =1,...,n
and i < j, the following conditions hold, then A C B.

ag; + Biy + 055+ = € (12)
4 L

0i; > € (13)

’Yz‘ej > ij (14)

e; <0 (15)

Proposition 1 implies that with parameter specification as in (12) — (15), we
ensure that any combination in C; must satisfy all corresponding constraints
(10) for every index pair.

Proposition 2 Consider any (z,y) € B. If (xl-,xﬁyf,y;) € C1L Uy for each
(4,5), 4,5 =1,...,n and i < j, then there exists (x,y) € A such that (z,y) in
(P2) and (z,9) in (P1) yield the same objective function value.

Proposition 2 implies that although A C B allows more feasible solutions
to (P2) than (P1), such feasible solution region expansion does not affect
the optimality equivalence between (P1) and (P2) as long as for all (i, ),
1 <1< g <n, (xi,xj7yf,y§) € Cy U (5. Next, we show certain expansion
should not be allowed as it may affect the optimality equivalence between (P1)
and (P2). Thus, we should prohibit such expansion by specifying parameters
in constraint (10). We provide a sufficient condition to ensure this as fellows.

Proposition 3 Suppose for some (s,t), s,t =1,...,n and s < t, there exists
an index set Ly = (l1,l2,13,14,15) € {1,...,75}> such that the following
conditions hold:

A A

alh + 05+ < €l (16)
B +05% +q5 < (17)
05 + ey < €3 (18)
ag + 05 < el (19)
B+ < €. (20)
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Note that it is allowed in Proposition 3 that [,, =1, for 1 <ry #ry <5
and that the choice of Ly may not be unique for a given index pair (s,t).
Proposition 3 implies that B should not contain any (z,y) from Cs, since such
a solution may destroy the optimality equivalence between (P1) and (P2).
With the three propositions presented earlier, we readily state one sufficient
condition to ensure (P2) is a valid reformulation of (PO0).

Theorem 1 Formulations (P1) and (P2) are equivalent in the sense that they
yield the same optimal objective function value and the same optimal solution
with respect to x, if there exists (o, 8, 0,7, €) such that for any index pair (i, j)
with i < j, the following conditions hold:

1. foralll=1,...,7;,

L L

O‘fj + B + efj + ’Yiéj 2 €5 (21)
efj > ijé (22)
'Yiej > 65;‘; (23)
efj <0. (24)

2. there exists an index set L;j, i.e., (Z’ﬂﬁ;ﬂﬁ;ﬂéaﬂé?) such that

0
ij

o ey
Bij +0i; +

07
ij <e€

o 05
ij < Gy

(
(
0y (
(

ij
El .

£

@

G

o + Gij < €5 28
¢4 0 05

Bij +7; <& - (29

Theorem 1 establishes the fact that appropriate parameter specification
for constraints (10) can yield a valid reformulation of (P0). Then with intro-
duction of the copying variables, one may find it is viable to deal with (P2)
instead of (P0). We focus on a Lagrangian decomposition based approach
to obtain a promising feasible solution efficiently, and we hope the proposed
lower-bounding scheme can contribute to exact solution development for gen-
eral QBPs.

2.2 Lagrangian Decomposition of (P2)

Assume that the parameters in (10) are already specified to let (P2) be equiv-
alent to (P0). For each pair 1 <i < j <nandeach?=1,...,r;;, we associate
a Lagrangian multiplier )\fj with the corresponding constraint (10). Then the
Lagrangian dual problem of (P2) is given by

Iglzigrggx{L(A,xvy) | (9), A}, (30)
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where LA @,y) = f (2, 9)+ 200y s 42y (N (ol + Byl + 042 +fa; — b)) =

=1 j>il=1 Jj<it=1 Jj>i i<i

n Tij Tji Tij Tji
> (Cﬁzz”’ 0+ DD X + 2 (F +ZA afu; + 3 +Zkfzﬂfz yf) -

Tij

3D B SIRNCI

i=175>i0=1

Define dual function L(\) as

L()\)—Hl&XL()\Iy ’X{Z 9i(y")z:) } ZZi)\

i=1 i=1 j>i =1

n Tij
e {3 (et } SYSNG @
i=1 Y i=1 j>i £=1
where
Tij Tji Tij
_CZ+ZZ/\fJGfJ+ZZ>\JZ’Yﬂ+Z CZJ+Z>‘U Q5 yj
j>i 4=1 Jj<i £=1 J>1
T4
+Z C’J—’_Z)‘ﬂ Ji y]’ )
j<i
fori=1,...,n.

Lemma 1 Consider a function f(x,y) = g(y)h(z) withx € X andy € Y. If
h(z) > 0 for all x € X, then maxzex yey f(x,y) = maxgex yey 9(y)h(zr) =
maxge x{(maxy,cy g(y))h(x)}.

Using Lemma 1 we can decompose computing L(A) to n unconstrained
linear binary problems and one linear binary program. For eachi = 1,...,n, let

gi = max 9i(y"), (34)

which is an unconstrained linear binary program only involving ‘. Then

Tij

L(A = max Zgle ZZZ)\ ,(11) 5, (35)

i=1 j>i (=1

which is a linear binary program only involving z. We refer to (35) as the
master subproblem after decomposition (MSAD).

By applying Lemma 1, we can compute L(\) by solving n unconstrained
linear binary problems, each of which corresponds to y%, i = 1,...,n, and
one linear binary program, which corresponds to x. It is easy to solve each
unconstrained integer program (IP) max,: g;(y") with n — 1 binary variables.
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Thus, generally speaking, the complexity of solving L()) is determined by the
complexity of solving MSAD.

Note that MSAD preserves the feasible solution region of (P0). Hence, we
can directly apply heuristics or exact solution methods that are shown efficient
to the linear binary programming counterpart of (P2). More importantly, for
any given A > 0, solving MSAD yields a feasible solution to (P0). Thus,
applying an iterative algorithm (e.g., subgradient algorithm) to solving MSAD
may provide a number of promising feasible solutions to (P0).

2.3 Parameter Specification in Quadratic Constraints (10)

To ensure the equivalence of (P0) and (P2), specifying the parameters in con-
straints (10) is necessary. Theorem 1 provides a sufficient condition for such
specification that as long as (21)-(29) are satisfied. For convenience, it is valid
to use any constant number of quadratic constraints for each index pair, i.e.,
r;j =1 for all 1 <4 < j < n. For this paper, we implemented the following set
of parameters to conduct initial experiments.

o =1, B, =0, 05 =—-1, v, = -1, ¢; = —1; (36)
oy =1, = 1, 05 =055, =0, & =0 (0
afy = —1, B =1, 0, =0, v, =0, €; = 0. (41)

It can be checked that (36)—(41) satisfy the conditions in Theorem 1. To
be specific, for all (¢,j) with 1 < i < j < n, we have (i) (36)—(41) all satisfy
conditions (21)—(24); and (ii) (37) and (41) satisfy (25), (36) and (40) satisfy
(26), (36) and (37) satisfy (27), (38) and (41) satisfy (28), and (39) and (40)
satisfy (29). Therefore, one can select ¢;, 7 = 1,...,5, accordingly. For example,
by setting (¢1,0a,¢3,04,05) = (2,1,2,3,4), the conditions in Theorem 1 are
satisfied, suggesting that the first four sets of parameters is sufficient enough
to ensure the equivalence between (P0) and (P2).

With the parameters specified in (36)—(41), we can simplify the quadratic
constraints (10) as:

xiy§2xi+x]~—1, (42)
ziyl > @i+ w1, (43)
x; > x5y, (44)

x; > xzy;, ( )

(46)

i J
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for each (i,7), 1 <i < j < n. Note that (40) and (41) yield z;y} > !
and xzy; < z;y] respectively, and thus form equality (46). By replacing z;; =
a:ly; = xjyg for each pair (i,7), 1 < i < j < n, it is clear and interesting
to see the similarity between constraints (42)-(46) and the constraints in the
standard linearization formulation of (P0).

Remark 1 It is impossible to cover all the rules specified in Theorem 1 with
only one set of quadratic constraints in (P2) formulation, i.e., r;; = 1 in (10),
because (21), (28), and (29) can not be satisfied simultaneously. Therefore,
the minimum number of quadratic constraints for each index pair (i,7) is 2,
ie,r; >2foralll1 <i<j<n.

Remark 2 There are infinite number of valid parameter specifications. For
example, if we use two quadratic constraints for each index pair (i,j) with
1<i<j<n,ie, ry; =2, and set a}j zﬂfj =1, a?j :,Bilj =—1—¢, and
0l; = 07, = i; =77 = €i; = €;; = ¢, then for any value of e where —1 < e <0,
there exist a parameter specification that satisfies Theorem 1.

3 Computational Experiments

We examined the performance of our lower-bounding scheme through solving
four classes of QBPs with different constraints: unconstrained QBP, dense k-
subgraph problem (DESP), quadratic semi-assignment problem (QSAP), and
quadratic assignment problem (QAP). The value of k in DkSP is set to be a
half of the instance size, i.e., k = n/2. With parameters specified as in (36)
— (41), we iteratively solved the decomposed subproblems, (34) and (35) with
starting Lagrangian multiplier values of zeros, and updated the multipliers
using a subgradient method [24] until the relaxed problem (30) was solved to
optimality. Every solution obtained from (35) in each iteration was feasible
to the original problem and therefore recorded. Our lower-bounding scheme
ended with identifying the feasible solution that has the largest objective value.
For comparison, the same instances were solved directly with the QBP solver
of Gurobi 6.5.0.

In our experiment, test instances were randomly generated with the method
described in [34]. Objective function coefficient matrices have diagonal ele-
ments sampled from uniform distribution with interval [0, 75] and off-diagonal
elements drawn uniformly from [—50,50]. All the generated objective coeffi-
cient matrices are of full density. We considered three problem sizes for each
class of QBPs and 10 test instances for each problem size. All computational
work was implemented in Python 2.7.8 on a Linux 64bit machine with 66GB
RAM and 32 CPU cores, where each job only uses one core with clock rate of
2.3 GHz and has a computing time limit of 5 hours.

Table 1 reports the comparative results of embedding our lower-bounding
scheme in the Gurobi solver as a preporcessing scheme and without our scheme,
in terms of optimality gap and computational time. The experiments without
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Table 1 Comparative results on the QBP instances in terms of optimality and CPU time.

Without Our Scheme With Our Scheme
QBP Inst. Opt. Gap (%) Time (s) Opt. Gap (%) Time (s)
Class Size Max Avg Min Max Avg Min | L.D. Total
n = 30 0 0.31 0 1.39 1.64
Uncons n = 50 0 273 0 4.7 25.5
-trained | n =100 | 56.6 45.7 34.3 5 hr. 45.8 35.3 24.0 21 5 hr.
n = 30 0 0.51 0 1.42 1.75
DkSP n = 50 0 129 0 4.5 87.1
(k=n/2) | n=100 | 51.2 43.6 36.4 5 hr. 51.0 43.0 359 20 5 hr.
n=>5 0 0.24 0 0.99 1.24
QSAP n =10 0 15176 0 22 13976
n=15 474 425 386 5 hr. 453 423 407 118 5 hr.
n=>5 0 0.24 0 11.7 11.9
QAP n =10 0 473 0 35 434
n =15 498 462 422 5 hr. 473 454 415 136 5 hr.

our scheme let the Gurobi solver solve the instances along with its default
preprocessing functions of presolve and lower-bounding heuristic, whereas the
experiments with our scheme used our preprocessing scheme first and inputted
the identified feasible solution as the initial lower bound for the Gurobi’s
mixed-integer linear programming (MILP) solver. Among the four classes,
only QAP employed the MILP solver to the one constrained linear binary
subproblem (35) iteratively during the preprocessing. For each QBP class and
size, we randomly generated 10 instances, and the columns time in Table 1
show the average CPU time of solving the 10 instances. The abbreviations
L.D. means the time spent on the Lagrangian decomposition to acquire the
feasible solution.

Suggested by the results in Table 1, when the instance size is small (n = 30
for unconstrained QBP and DASP and n = 5 for QSAP and QAP), inputting
the feasible solution we picked shortens the solving time taken by the Gurobi
solver. However, solving Lagrangian dual problem takes too long and hence
offsets the benefit it brings. As the instance size increases, the advantage of
providing a good starting lower bound arises. For all but one of the instances
with middle size (n = 50 for unconstrained QBP and DkSP and n = 10 for
QSAP and QAP), using our lower-bounding scheme helps reaching the same
optimal solutions in shorter amounts of time. The benefit of using our lower-
bounding scheme remains when it comes to the large size instances (n = 100)
of unconstrained QBP and DASP, which is reflected on the optimality gaps.
However, when the complexity of the problem keeps increasing, the disadvan-
tage of our crude approach of incorporating the Lagrangian decomposition
approach appears. Among large-size instances (n = 15) of QSAP and QAP,
only six and seven out of ten instances, respectively, have smaller optimality
gaps compared to the experiments without the use of our scheme. Neverthe-
less, an important point made through our preliminary experiment is that in
every instance we have tested, the feasible solution obtained by our scheme is
superior to the initial feasible solution came from Gurobi’s default heuristics
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for its own lower bounding, even though this advantage may not be effective
when solving large-size instances of QSAP and QAP.

Furthermore, we examined the effect of different parameter specifications
on the computational results. Based on the six valid specifications we tested,
we noted that there is no specification that guarantees the best lower bound.
Different specifications yield better or worse lower bounds when applied to
solving the instances. In terms of the experimental results, the CPU time
and optimality gap are not sensitive to parameter specifications. The only
suggestion we can confidently make is that it is not beneficial to add many
quadratic constraints (i.e., the number of 7;; in (10) is greater than 6).

4 Concluding Remarks

In this paper, we describe a generic approach to acquiring a good feasible so-
lution of general QBPs and how the parameterized quadratic constraints help
attaining computational benefits through decomposing the original problem
into binary linear subprograms but not changing the underlying structure.
The feasible solution provides a promising initial lower bound for the followed
branch-and-bound procedure, which likely contributes to the computational
improvement, as shown in our experiments.

One limitation of this work is that the way we examined the performance
of the lower bounds is preliminary and not elaborate. Simply inputting the
feasible solution can result in poor compatibility with the Groubi solvers and
thus worsened computational efficiency. Another limitation is that we only
performed computational experiments on a small set of QBP classes. It is in-
teresting to conduct comprehensive study on other common classes of QBPs
and more general QBPs. In addition, it is interesting to derive more com-
prehensive Lagrangian decomposition schemes by considering the cases where
each cluster contains more than one variable, i.e., p < n and |I5| > 1 for some
cluster index s (see (P1)). It is also interesting to investigate the effect of com-
bining the proposed quadratic constraints with other constraints for lineariza-
tion (e.g., (6)), and study how to integrate our lower-bounding scheme with
existing exact methods. For instance, expanding the use of our lower-bounding
scheme to every node of branch-and-bound procedure instead of only at the
root could have better performance. We leave the aforementioned topics and
the potential refinement of our lower-bounding scheme to future research.
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