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Welcome To MATLAB

• MATLAB is a program for doing numerical 
computations, originally designed for solving linear 
algebra type problems
– MATLAB = MATrix LABoratory

• MATLAB is an interpreter
– Code does not need to be compiled
– Can make a little slower than compiled code
– Can be linked to C / C++, JAVA, SQL, etc.

• Widely used in engineering industry and academia, 
especially at Purdue and aerospace industry

• Can do much more than just math!
– Wide variety of toolboxes and functions available
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MATLAB Environment
(R2012a or Earlier)
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MATLAB Environment
(R2012b or Later)
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Variables

• Do not have to be previously declared and can 
take any type (and switch that type)

– Types: logical, char, numeric, cell, structure, function 
handles

• Variable names can contain up to 63 characters

– Must start with a letter and can be followed by letters, 
digits, and underscores

• Variable (and function) names are case sensitive

– X and x are two different variables
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Pre-Defined Variables

• MATLAB has several pre-defined / reserved variables

– Beware: These variables can be overwritten with custom 
values!

ans Default variable name for results

pi Value of π

eps Smallest incremental number (2.2204e-16)

Inf / inf Infinity

NaN / nan Not a number (e.g., 0/0)

realmin Smallest usable positive real number (2.2251e-308)

realmax Largest usable positive real number (1.7977e+308)

i / j Square root of (-1)
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Assignment and Operators

Assignment (assign b to a) = a = b

Addition + a + b

Subtraction - a - b

Multiplication: Matrix * a * b

Multiplication: Element-by-Element .* a .* b

Division: Matrix / a / b

Division: Element-by-Element ./ a ./ b

Power: Matrix ^ a ^ b

Power: Element-by-Element .^ a .^ b
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Matrices

• MATLAB treats all variables as matrices
– For our purposes, a matrix can be thought of as an 

array, in fact, that is how it is stored

• Vectors are special forms of matrices and 
contain only one row or one column

• Scalars are matrices with only one row and
one column

• Matrices are described as rows-by-columns
– A 3 × 5 matrix as 3 rows and 5 columns
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Matrices

• Columns are separated by spaces or commas (,)

• Rows are separated by semicolons (;)

• White space between numbers has no effect

– [1,2,3] is the same as [1,    2    , 3]

row_vector = [1, 2, 3, 4,] or [1 2 3 4]

col_vector = [5; 6; 7; 8]

matrix = [1, 2, 3; 4, 5, 6; 7, 8, 9]
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Extracting a Sub-Matrix

A portion of a matrix can be extracted and stored in 
a smaller matrix by specifying the names of both 
the rows and columns to extract

sub_matrix = matrix(r1:r2 , c1:c2)

sub_matrix = matrix(rows , columns)

Where r1 and r2 specify the beginning and ending 
rows, and c1 and r2 specify the beginning and 
ending columns to extract

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 10



Colon Operator
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The colon operator helps to specify ranges

a:b Goes from a to b in increments of 1. If a > b, results in null vector

a:n:b Goes from a to b in increments of n. If n < 0 then a > b

A(:, b) The bth column of A

A(a, :) The ath row of A

A(:, :) All of the rows and columns of A (i.e., the A matrix)

A(a:b)
Elements a to b (in increments of 1) of A. NOTE: Elements are 
counted down the columns and then across the rows!

A(:, a:b) All rows and columns a to b (in increments of 1)

A(:) All elements of A in a single column vector



Matrices

• Accessing single elements of a matrix:

A(a,b) Element in row a and column b

• Accessing multiple elements of a matrix:

A(1,4) + A(2,4) + A(3,4) + A(4,4)

sum(A(1:4,4)) or sum(A(:,end))
– In locations, the keyword end refers to the last row or column

• Deleting rows and columns:

A(:,2) = [] Deletes the second column of A

• Concatenating matrices A and B:

C = [A ; B] for vertical concatenation

C = [A , B] for horizontal concatenation
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Matrix Functions in MATLAB

A = ones(m,n) Creates an m×n matrix of 1’s

A = zeros(n,m) Creates an m×n matrix of 0’s

A = eye(n) Creates an n×n identity matrix

A = NaN(m,n) Creates an m×n matrix of NaN’s

A = inf(m,n) Creates an m×n matrix of inf’s

A = diag(x) Creates a diagonal matrix A of x or

x = diag(A) Extracts diagonal elements from A

[m,n] = size(A) Returns the dimensions of A

n = length(A) Returns the largest dimension of A

n = numel(A) Returns number of elements of A
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Matrix Functions in MATLAB

x = sum(A) Vector with sum of columns

x = prod(A) Vector with product of columns

B = A' Transposed matrix

d = det(A) Determinant

[x,y] = eig(A) Eigenvalues and eigenvectors

B = inv(A) Inverse of square matrix

B = pinv(A) Moore-Penrose pseudoinverse

B = chol(A) Cholesky decomposition

[Q,R] = qr(A) QR decomposition

[U,D,V] = svd(A) Singular value decomposition
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Logic in Matrices

B = any(A) Determine if any elements in each column of
A are nonzero

B = all(A) Determine if all elements in each column of 

A are nonzero

B = find(A) Find indices of all non-zero elements of A

Can also use logic!

B = find(A>4 & A<5) Elements > 4 and < 5

B = all(A~=9) Elements not equal to 9

B = any(A==3 | A==5) Elements equal to 3 or 5

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 15



PLOTTING IN MATLAB



Plotting in MATLAB

• MATLAB has extensive plotting capabilities

• Basic function is plot to plot one vector vs. another 

vector (vectors must have same length)

plot(x, y)

• Can also simply plot one vector vs. its index

plot(x)

• Repeat three arguments to plot multiple vectors

– Different pairs of x and y data can have different sizes!

plot(x1, y1, x2, y2, x3, y3)
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Plotting in MATLAB

>> x1 = 0:1:2*pi;

>> y1 = sin(x1);

>> x2 = 0:0.01:2*pi;

>> y2 = sin(x2);

>> plot(x1,y1,x2,y2)
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MATLAB will automatically change the 
colors of the lines if plotted with one 

plot command!



Plotting in MATLAB

• The line style, marker symbol, and color of the plot is 
specified by the LineSpec

• LineSpec is specified for each line after the y data and is 

optional

• To see all options in MATLAB: doc LineSpec

• Common formatting:
– Lines: '-' solid, '--' dashed, ':' dotted, '-.' dash-dot

– Markers: '+' plus, 'o' circle, '.' point, 's' square, 'd' diamond, 
'x' cross, and more!

– Colors: 'r' red, 'g' green, 'b' blue, 'k' black, 'y' yellow, 'c'
cyan, 'm' magenta 
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Plotting in MATLAB

>> plot(x1,y1,'ks',x2,y2,'r--')
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Plotting in MATLAB

• Other commands allow you to modify the plot
– Annotation: title, xlabel, ylabel, zlabel

– Grid: grid on, grid off, grid minor

– Axes: axis([xmin xmax ymin ymax]), axis keyword (doc axis
for full keyword list)

– Legend: legend('Line 1','Line 2','Location','Position')

• Another way to plot multiple lines is with the hold command
hold on

plot(x1,y1)

plot(x2,y2)

hold off

• Unless a new figure is created using figure(), any plotting 

function will overwrite the current plot
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Plotting in MATLAB

>> plot(x1,y1,'sk',x2,y2,'r--') 

>> legend('7 Data Points','629 Data Points','Location','NorthEast')

>> title('Some Sine Curves!')

>> xlabel('x')

>> ylabel('sin(x)')

>> grid on

>> axis tight
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Plotting in MATLAB

• Subplot function in MATLAB
– subplot(m,n,p)

• Functionality
– Breaks the figure into an m (rows) by n (cols) grid, and 

places the plot in location p (counts across rows first)
– Plot can span across multiple locations by setting p as a 

vector  subplot(2, 3, [2 5])

– Set the subplot location with subplot command, then use 
normal plotting commands (plot, hist, surf, etc.)

• Title Over ALL Subplots
• Use command suptitle('Title Text')

– suptitle must be LAST command of entire subplot
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Plotting in MATLAB

• Other plotting functions in MATLAB
– Log scales: semilogx, semilogy, loglog
– Two y-axes scales: plotyy
– 3D line plots: plot3
– Surface and mesh plots: surf, surfc, mesh, meshc, waterfall, ribbon, 

trisurf, trimesh
– Histograms: hist, histc, area, pareto
– Bar plots: bar, bar3, barh, bar3h
– Pie charts: pie, pie3, rose
– Discrete data: stem, stem3, stairs, scatter, scatter3, spy, plotmatrix
– Polar plots: polar, rose, compass
– Contour plots: contour, contourf, contourc, contour3, contourslice
– Vector fields: feather, quiver, quiver3, compass, streamslice, 

streamline
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PROGRAMMING IN MATLAB



Programming in MATLAB

• Elements of MATLAB as a programming language:
– Expressions
– Flow Control Blocks

• Conditional
• Iterations (Loops)

– Scripts
– Functions
– Objects and classes (not covered here)

• Be mindful of existing variables and function names!
– Creating a variable or function that is already used by MATLAB 

will cause troubles and errors!
– Example: Saving a variable as sin = 10 will prevent you from 

using the sine function! Use something more descriptive such as 
sin_x = 10
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Relational Operators

• MATLAB has six relational Operators
– Less Than <

– Less Than or Equal <=

– Greater Than >

– Greater Than or Equal >=

– Equal To ==

– Not Equal To ~=

• Relational operators can be used to compare scalars to 
scalars, scalars to matrices/vectors, or matrices/vectors 
to matrices/vectors of the same size

• Relational operators to precedence after addition / 
subtraction
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Logical Operators

• MATLAB supports four logical operators
– Not ~

– And & or &&

– Or | or ||

– Exclusive Or (xor) xor()

• Not has the highest precedence and is evaluated 
after parentheses and exponents

• And, or, xor have lowest precedence and are 
evaluated last
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Conditional Structures

• If / Then Structure
if expression

commands

end

• If / Else Structure
if expression

commands

else

commands

end

• Example
if (x > 4) && (y < 10)

z = x + y;

end

• Example
if (x > 4) && (y < 10)

z = x + y;

else

z = x * y;

end
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Conditional Structures

• If / Elseif / Else Structure
if expression

commands

elseif expression

commands

else

commands

end

• Example
if (x > 4) && (y < 10)

z = x + y;

elseif (x < 3)

z = 10 * x;

elseif (y > 12)

z = 5 / y;

else

z = x * y;

end
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Conditional Structures

• Conditional Structures can be nested inside each other
if (x > 3)

if (y > 5)

z = x + y;

elseif (y < 5)

z = x - y;

end

elseif (y < 10)

z = x * y;

else

z = x / y;

end

• MATLAB will auto-indent for you, but indentation is not 
required
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Conditional Structures

• Switch / Case / Otherwise function used if known cases of a 
variable will exist
– Used in place of If / Elseif / Else structure

• Syntax 
switch switch_expression

case case_expression

statements

case case_expression

statements

otherwise

statements

end
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Conditional Structures

if – elseif - else switch – case - otherwise

if x == 1

z = 5;

elseif x == 2

z = 4;

elseif x == 3

z = 3;

elseif (x == 4) || (x == 5)

z = 2;

else

z = 1;

end

switch x

case 1

z = 5;

case 2

z = 4;

case 3

z = 3;

case {4 , 5}

z = 2;

otherwise

z = 1;

end
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MATLAB Iteration Structures

• Definite looping structures (for)

for var = expression

commands

end

• Can also nest loops!

– Can mix for / while loops

• Example

for ii = 1:1:25

A(ii) = [ii, ii^2];

end

• Nested For Loop Example

for ii = 1:1:25

for jj = [1 3 5 6]

A(ii) = ii*jj;

end

end

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 34



MATLAB Iteration Structures

• Indefinite looping structures 
(while)
while expression

commands

end

• You need to make sure the 
variable in the while loop 
expression is changed during 
the loop!

– May lead to an infinite 
loop!

• Example
x = 0; y = 0;

while x < 10

y = y + x;

x = x + 1;

end

• Infinite Loop
x = 0;

while x < 10

y = x;

end
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M-Files

• Text files containing MATLAB programs
– Can be called from the command line or from 

other M-Files

• Contain “.m” file extension

• Two main types of M-Files
– Scripts

– Functions

• Comment character is %
– % will comment out rest of line

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 36



M-Files – Scripts

• Scripts are simply M-Files with a set of commands 
to run
– Do not require input values or have output values
– Execute commands similarly to how they would be 

done if typed into the command window

• To create new M-File:
– >> edit filename

– Ctrl + N or ⌘ + N
– Select New  Script from Menu

• To run M-File:
– >> filename
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M-Files – Scripts

>> edit demoPlot

>> demoPlot
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% This Script Makes a Demo Plot!

%   Isaac Tetzloff - Aug 2014

figure()                        % New Figure

x1 = 0:1:2*pi; y1 = sin(x1);    % First Data Set

x2 = 0:0.01:2*pi; y2 = sin(x2); % Second Data Set

plot(x1,y1,'sk',x2,y2,'r--')    % Make Plot

title('Some Sine Curves!')      % Add Title, Labels, Legend, etc.

xlabel('x')

ylabel('sin(x)')

legend('7 Data Points','629 Data Points','Location','NorthEast')

grid on

axis tight



M-Files – Functions

• Functions typically require input or output values

• “What happens in the function, stays in the function”

– Only variables visible after function executes are those 
variables defined as output

• Usually one file for each function defined

• Structure:

function [outputs] = funcName(inputs)

commands;

end
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M-Files – Functions

function [outputs] = funcName(inputs)

• Function Definition Line Components
1. Function keyword  Identifies M-File as a function
2. Output Variables  Separated by commas, contained in square 

brackets
• Output variables must match the name of variables inside the 

function!
3. Function Name  Must match the name of the .m file!
4. Input Variables  Separated by commas, contained in parentheses

• Input variables must match the name of variables inside the 
function!

• When calling a function, you can use any name for the 
variable as input or output
– The names do not have to match the names of the .m file
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M-Files – Functions 

>> [a, p] = demoFunc(10, 15); % Returns both values as a & p

>> area = demoFunc(10, 5); % Returns area and saves as area

>> perim = demoFunc(5, 15); % Returns area and saves as perim!

>> [perim, area] = demoFunc(5, 15); % Saves area as perim, and vice versa!

>> x = [1 2 3]; y = [5 4 3];

>> [x, y] = demoFunc(x, y); % Returns both and overwrites input!
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function [area, perimeter] = demoFunc(base, height)

% Demo function to calculate the area and perimeter of a rectangle

% Function can handle scalar and vector inputs

%   Isaac Tetzloff - Aug 2014

area = base .* height;              % Calculate the area

perimeter = 2 * (base + height);    % Calculate the perimeter

end



M-Files – Functions

• In modified function below, only variables output are area
and perimeter
– MATLAB and other functions will not have access to depth, 

mult, add, or volume!
– REMEMBER: What happens in the function stays in the function!
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function [area, perimeter] = demoFunc(base, height)

depth = 10;             % Assume 3D prism has depth of 10

mult = base .* height;  % Multiply base by height

add  = base + height;   % Add base and height

area = mult;            % Calculate the area

perimeter = 2 * add;    % Calculate the perimeter

volume = mult * depth;  % Calculate the volume

end



Debugging in MATLAB

• MATLAB errors are very descriptive and 
provide specifics about error

– If a function or script causes an error, MATLAB will 
give the line of code and file with the error
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Debugging in MATLAB

• The MATLAB Editor provides on-the-fly debugging help!
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Debugging in MATLAB

• The MATLAB Editor provides on-the-fly debugging help!
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Advanced Features to Explore

Symbolic Math
• Allows for symbolic manipulation of equations, including solving, simplifying, 

differentiating, etc.
Inline Functions
• Creates a workspace variable that is a simple equation

>> f = @(x) x^2 + 2*x + 1

>> y = f(3)  y = 16

Numerical Integration
• Solve differential equations / equations of motion using ode45, ode23, 

ode113, etc.
Optimization
• Solve constrained problems with fmincon, unconstrained with fminunc, 

bounded problems with fminbnd, etc.
Many Others!
• MATLAB is extremely powerful and has a lot of advanced features, too many 

to go through here!
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Getting Help in MATLAB

• Within MATLAB:
– Type help function to provide information about the function in 

the command window

– Type doc function to open the documentation about the function

– Type doc to pull up the documentation within MATLAB to explore

• Online
– Documentation: http://www.mathworks.com/help/MATLAB/

– Tutorials: 
http://www.mathworks.com/academia/student_center/tutorials/

– MATLAB Primer / Getting Started with MATLAB (pdf):  
http://www.mathworks.com/help/pdf_doc/MATLAB/getstart.pdf
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