
Introduction to

Isaac Tetzloff

isaact@purdue.edu

MATLAB

Welcome To MATLAB

• MATLAB is a program for doing numerical
computations, originally designed for solving linear
algebra type problems
– MATLAB = MATrix LABoratory

• MATLAB is an interpreter
– Code does not need to be compiled
– Can make a little slower than compiled code
– Can be linked to C / C++, JAVA, SQL, etc.

• Widely used in engineering industry and academia,
especially at Purdue and aerospace industry

• Can do much more than just math!
– Wide variety of toolboxes and functions available

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 2

MATLAB Environment
(R2012a or Earlier)

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 3

Current Folder
Contents of

working directory

Workspace
Current
variables

Command
History

Past Commands

Command Window
Where the magic happens

Working Path
Where you are

MATLAB Environment
(R2012b or Later)

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 4

Current Folder
Contents of

working directory

Workspace
Current
variables

Command
History

Past Commands

Command Window
Where the magic happens

Working Path
Where you are

“Toolstrip” & Apps
Ribbon w/ key functions

Variables

• Do not have to be previously declared and can
take any type (and switch that type)

– Types: logical, char, numeric, cell, structure, function
handles

• Variable names can contain up to 63 characters

– Must start with a letter and can be followed by letters,
digits, and underscores

• Variable (and function) names are case sensitive

– X and x are two different variables

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 5

Pre-Defined Variables

• MATLAB has several pre-defined / reserved variables

– Beware: These variables can be overwritten with custom
values!

ans Default variable name for results

pi Value of π

eps Smallest incremental number (2.2204e-16)

Inf / inf Infinity

NaN / nan Not a number (e.g., 0/0)

realmin Smallest usable positive real number (2.2251e-308)

realmax Largest usable positive real number (1.7977e+308)

i / j Square root of (-1)

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 6

Assignment and Operators

Assignment (assign b to a) = a = b

Addition + a + b

Subtraction - a - b

Multiplication: Matrix * a * b

Multiplication: Element-by-Element .* a .* b

Division: Matrix / a / b

Division: Element-by-Element ./ a ./ b

Power: Matrix ^ a ^ b

Power: Element-by-Element .^ a .^ b

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 7

Matrices

• MATLAB treats all variables as matrices
– For our purposes, a matrix can be thought of as an

array, in fact, that is how it is stored

• Vectors are special forms of matrices and
contain only one row or one column

• Scalars are matrices with only one row and
one column

• Matrices are described as rows-by-columns
– A 3 × 5 matrix as 3 rows and 5 columns

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 8

Matrices

• Columns are separated by spaces or commas (,)

• Rows are separated by semicolons (;)

• White space between numbers has no effect

– [1,2,3] is the same as [1, 2 , 3]

row_vector = [1, 2, 3, 4,] or [1 2 3 4]

col_vector = [5; 6; 7; 8]

matrix = [1, 2, 3; 4, 5, 6; 7, 8, 9]

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 9

Extracting a Sub-Matrix

A portion of a matrix can be extracted and stored in
a smaller matrix by specifying the names of both
the rows and columns to extract

sub_matrix = matrix(r1:r2 , c1:c2)

sub_matrix = matrix(rows , columns)

Where r1 and r2 specify the beginning and ending
rows, and c1 and r2 specify the beginning and
ending columns to extract

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 10

Colon Operator

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 11

The colon operator helps to specify ranges

a:b Goes from a to b in increments of 1. If a > b, results in null vector

a:n:b Goes from a to b in increments of n. If n < 0 then a > b

A(:, b) The bth column of A

A(a, :) The ath row of A

A(:, :) All of the rows and columns of A (i.e., the A matrix)

A(a:b)
Elements a to b (in increments of 1) of A. NOTE: Elements are
counted down the columns and then across the rows!

A(:, a:b) All rows and columns a to b (in increments of 1)

A(:) All elements of A in a single column vector

Matrices

• Accessing single elements of a matrix:

A(a,b) Element in row a and column b

• Accessing multiple elements of a matrix:

A(1,4) + A(2,4) + A(3,4) + A(4,4)

sum(A(1:4,4)) or sum(A(:,end))
– In locations, the keyword end refers to the last row or column

• Deleting rows and columns:

A(:,2) = [] Deletes the second column of A

• Concatenating matrices A and B:

C = [A ; B] for vertical concatenation

C = [A , B] for horizontal concatenation

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 12

Matrix Functions in MATLAB

A = ones(m,n) Creates an m×n matrix of 1’s

A = zeros(n,m) Creates an m×n matrix of 0’s

A = eye(n) Creates an n×n identity matrix

A = NaN(m,n) Creates an m×n matrix of NaN’s

A = inf(m,n) Creates an m×n matrix of inf’s

A = diag(x) Creates a diagonal matrix A of x or

x = diag(A) Extracts diagonal elements from A

[m,n] = size(A) Returns the dimensions of A

n = length(A) Returns the largest dimension of A

n = numel(A) Returns number of elements of A

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 13

Matrix Functions in MATLAB

x = sum(A) Vector with sum of columns

x = prod(A) Vector with product of columns

B = A' Transposed matrix

d = det(A) Determinant

[x,y] = eig(A) Eigenvalues and eigenvectors

B = inv(A) Inverse of square matrix

B = pinv(A) Moore-Penrose pseudoinverse

B = chol(A) Cholesky decomposition

[Q,R] = qr(A) QR decomposition

[U,D,V] = svd(A) Singular value decomposition

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 14

Logic in Matrices

B = any(A) Determine if any elements in each column of
A are nonzero

B = all(A) Determine if all elements in each column of

A are nonzero

B = find(A) Find indices of all non-zero elements of A

Can also use logic!

B = find(A>4 & A<5) Elements > 4 and < 5

B = all(A~=9) Elements not equal to 9

B = any(A==3 | A==5) Elements equal to 3 or 5

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 15

PLOTTING IN MATLAB

Plotting in MATLAB

• MATLAB has extensive plotting capabilities

• Basic function is plot to plot one vector vs. another

vector (vectors must have same length)

plot(x, y)

• Can also simply plot one vector vs. its index

plot(x)

• Repeat three arguments to plot multiple vectors

– Different pairs of x and y data can have different sizes!

plot(x1, y1, x2, y2, x3, y3)

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 17

Plotting in MATLAB

>> x1 = 0:1:2*pi;

>> y1 = sin(x1);

>> x2 = 0:0.01:2*pi;

>> y2 = sin(x2);

>> plot(x1,y1,x2,y2)

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 18

MATLAB will automatically change the
colors of the lines if plotted with one

plot command!

Plotting in MATLAB

• The line style, marker symbol, and color of the plot is
specified by the LineSpec

• LineSpec is specified for each line after the y data and is

optional

• To see all options in MATLAB: doc LineSpec

• Common formatting:
– Lines: '-' solid, '--' dashed, ':' dotted, '-.' dash-dot

– Markers: '+' plus, 'o' circle, '.' point, 's' square, 'd' diamond,
'x' cross, and more!

– Colors: 'r' red, 'g' green, 'b' blue, 'k' black, 'y' yellow, 'c'
cyan, 'm' magenta

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 19

Plotting in MATLAB

>> plot(x1,y1,'ks',x2,y2,'r--')

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 20

Plotting in MATLAB

• Other commands allow you to modify the plot
– Annotation: title, xlabel, ylabel, zlabel

– Grid: grid on, grid off, grid minor

– Axes: axis([xmin xmax ymin ymax]), axis keyword (doc axis
for full keyword list)

– Legend: legend('Line 1','Line 2','Location','Position')

• Another way to plot multiple lines is with the hold command
hold on

plot(x1,y1)

plot(x2,y2)

hold off

• Unless a new figure is created using figure(), any plotting

function will overwrite the current plot

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 21

Plotting in MATLAB

>> plot(x1,y1,'sk',x2,y2,'r--')

>> legend('7 Data Points','629 Data Points','Location','NorthEast')

>> title('Some Sine Curves!')

>> xlabel('x')

>> ylabel('sin(x)')

>> grid on

>> axis tight

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 22

Plotting in MATLAB

• Subplot function in MATLAB
– subplot(m,n,p)

• Functionality
– Breaks the figure into an m (rows) by n (cols) grid, and

places the plot in location p (counts across rows first)
– Plot can span across multiple locations by setting p as a

vector  subplot(2, 3, [2 5])

– Set the subplot location with subplot command, then use
normal plotting commands (plot, hist, surf, etc.)

• Title Over ALL Subplots
• Use command suptitle('Title Text')

– suptitle must be LAST command of entire subplot

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 23

Plotting in MATLAB

• Other plotting functions in MATLAB
– Log scales: semilogx, semilogy, loglog
– Two y-axes scales: plotyy
– 3D line plots: plot3
– Surface and mesh plots: surf, surfc, mesh, meshc, waterfall, ribbon,

trisurf, trimesh
– Histograms: hist, histc, area, pareto
– Bar plots: bar, bar3, barh, bar3h
– Pie charts: pie, pie3, rose
– Discrete data: stem, stem3, stairs, scatter, scatter3, spy, plotmatrix
– Polar plots: polar, rose, compass
– Contour plots: contour, contourf, contourc, contour3, contourslice
– Vector fields: feather, quiver, quiver3, compass, streamslice,

streamline

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 24

PROGRAMMING IN MATLAB

Programming in MATLAB

• Elements of MATLAB as a programming language:
– Expressions
– Flow Control Blocks

• Conditional
• Iterations (Loops)

– Scripts
– Functions
– Objects and classes (not covered here)

• Be mindful of existing variables and function names!
– Creating a variable or function that is already used by MATLAB

will cause troubles and errors!
– Example: Saving a variable as sin = 10 will prevent you from

using the sine function! Use something more descriptive such as
sin_x = 10

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 26

Relational Operators

• MATLAB has six relational Operators
– Less Than <

– Less Than or Equal <=

– Greater Than >

– Greater Than or Equal >=

– Equal To ==

– Not Equal To ~=

• Relational operators can be used to compare scalars to
scalars, scalars to matrices/vectors, or matrices/vectors
to matrices/vectors of the same size

• Relational operators to precedence after addition /
subtraction

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 27

Logical Operators

• MATLAB supports four logical operators
– Not ~

– And & or &&

– Or | or ||

– Exclusive Or (xor) xor()

• Not has the highest precedence and is evaluated
after parentheses and exponents

• And, or, xor have lowest precedence and are
evaluated last

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 28

Conditional Structures

• If / Then Structure
if expression

commands

end

• If / Else Structure
if expression

commands

else

commands

end

• Example
if (x > 4) && (y < 10)

z = x + y;

end

• Example
if (x > 4) && (y < 10)

z = x + y;

else

z = x * y;

end

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 29

Conditional Structures

• If / Elseif / Else Structure
if expression

commands

elseif expression

commands

else

commands

end

• Example
if (x > 4) && (y < 10)

z = x + y;

elseif (x < 3)

z = 10 * x;

elseif (y > 12)

z = 5 / y;

else

z = x * y;

end

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 30

Conditional Structures

• Conditional Structures can be nested inside each other
if (x > 3)

if (y > 5)

z = x + y;

elseif (y < 5)

z = x - y;

end

elseif (y < 10)

z = x * y;

else

z = x / y;

end

• MATLAB will auto-indent for you, but indentation is not
required

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 31

Conditional Structures

• Switch / Case / Otherwise function used if known cases of a
variable will exist
– Used in place of If / Elseif / Else structure

• Syntax
switch switch_expression

case case_expression

statements

case case_expression

statements

otherwise

statements

end

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 32

Conditional Structures

if – elseif - else switch – case - otherwise

if x == 1

z = 5;

elseif x == 2

z = 4;

elseif x == 3

z = 3;

elseif (x == 4) || (x == 5)

z = 2;

else

z = 1;

end

switch x

case 1

z = 5;

case 2

z = 4;

case 3

z = 3;

case {4 , 5}

z = 2;

otherwise

z = 1;

end

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 33

MATLAB Iteration Structures

• Definite looping structures (for)

for var = expression

commands

end

• Can also nest loops!

– Can mix for / while loops

• Example

for ii = 1:1:25

A(ii) = [ii, ii^2];

end

• Nested For Loop Example

for ii = 1:1:25

for jj = [1 3 5 6]

A(ii) = ii*jj;

end

end

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 34

MATLAB Iteration Structures

• Indefinite looping structures
(while)
while expression

commands

end

• You need to make sure the
variable in the while loop
expression is changed during
the loop!

– May lead to an infinite
loop!

• Example
x = 0; y = 0;

while x < 10

y = y + x;

x = x + 1;

end

• Infinite Loop
x = 0;

while x < 10

y = x;

end

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 35

M-Files

• Text files containing MATLAB programs
– Can be called from the command line or from

other M-Files

• Contain “.m” file extension

• Two main types of M-Files
– Scripts

– Functions

• Comment character is %
– % will comment out rest of line

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 36

M-Files – Scripts

• Scripts are simply M-Files with a set of commands
to run
– Do not require input values or have output values
– Execute commands similarly to how they would be

done if typed into the command window

• To create new M-File:
– >> edit filename

– Ctrl + N or ⌘ + N
– Select New  Script from Menu

• To run M-File:
– >> filename

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 37

M-Files – Scripts

>> edit demoPlot

>> demoPlot

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 38

% This Script Makes a Demo Plot!

% Isaac Tetzloff - Aug 2014

figure() % New Figure

x1 = 0:1:2*pi; y1 = sin(x1); % First Data Set

x2 = 0:0.01:2*pi; y2 = sin(x2); % Second Data Set

plot(x1,y1,'sk',x2,y2,'r--') % Make Plot

title('Some Sine Curves!') % Add Title, Labels, Legend, etc.

xlabel('x')

ylabel('sin(x)')

legend('7 Data Points','629 Data Points','Location','NorthEast')

grid on

axis tight

M-Files – Functions

• Functions typically require input or output values

• “What happens in the function, stays in the function”

– Only variables visible after function executes are those
variables defined as output

• Usually one file for each function defined

• Structure:

function [outputs] = funcName(inputs)

commands;

end

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 39

M-Files – Functions

function [outputs] = funcName(inputs)

• Function Definition Line Components
1. Function keyword  Identifies M-File as a function
2. Output Variables  Separated by commas, contained in square

brackets
• Output variables must match the name of variables inside the

function!
3. Function Name  Must match the name of the .m file!
4. Input Variables  Separated by commas, contained in parentheses

• Input variables must match the name of variables inside the
function!

• When calling a function, you can use any name for the
variable as input or output
– The names do not have to match the names of the .m file

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 40

M-Files – Functions

>> [a, p] = demoFunc(10, 15); % Returns both values as a & p

>> area = demoFunc(10, 5); % Returns area and saves as area

>> perim = demoFunc(5, 15); % Returns area and saves as perim!

>> [perim, area] = demoFunc(5, 15); % Saves area as perim, and vice versa!

>> x = [1 2 3]; y = [5 4 3];

>> [x, y] = demoFunc(x, y); % Returns both and overwrites input!

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 41

function [area, perimeter] = demoFunc(base, height)

% Demo function to calculate the area and perimeter of a rectangle

% Function can handle scalar and vector inputs

% Isaac Tetzloff - Aug 2014

area = base .* height; % Calculate the area

perimeter = 2 * (base + height); % Calculate the perimeter

end

M-Files – Functions

• In modified function below, only variables output are area
and perimeter
– MATLAB and other functions will not have access to depth,

mult, add, or volume!
– REMEMBER: What happens in the function stays in the function!

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 42

function [area, perimeter] = demoFunc(base, height)

depth = 10; % Assume 3D prism has depth of 10

mult = base .* height; % Multiply base by height

add = base + height; % Add base and height

area = mult; % Calculate the area

perimeter = 2 * add; % Calculate the perimeter

volume = mult * depth; % Calculate the volume

end

Debugging in MATLAB

• MATLAB errors are very descriptive and
provide specifics about error

– If a function or script causes an error, MATLAB will
give the line of code and file with the error

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 43

Debugging in MATLAB

• The MATLAB Editor provides on-the-fly debugging help!

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 44

Green square
No errors or warnings

Orange Square
Warning present, but code
will still run
Indicated by orange bar

Mouse over for warning message

Debugging in MATLAB

• The MATLAB Editor provides on-the-fly debugging help!

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 45

Red square
Errors present and
code will not run!

Indicated by red bar

Mouse over for error message

Advanced Features to Explore

Symbolic Math
• Allows for symbolic manipulation of equations, including solving, simplifying,

differentiating, etc.
Inline Functions
• Creates a workspace variable that is a simple equation

>> f = @(x) x^2 + 2*x + 1

>> y = f(3)  y = 16

Numerical Integration
• Solve differential equations / equations of motion using ode45, ode23,

ode113, etc.
Optimization
• Solve constrained problems with fmincon, unconstrained with fminunc,

bounded problems with fminbnd, etc.
Many Others!
• MATLAB is extremely powerful and has a lot of advanced features, too many

to go through here!

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 46

Getting Help in MATLAB

• Within MATLAB:
– Type help function to provide information about the function in

the command window

– Type doc function to open the documentation about the function

– Type doc to pull up the documentation within MATLAB to explore

• Online
– Documentation: http://www.mathworks.com/help/MATLAB/

– Tutorials:
http://www.mathworks.com/academia/student_center/tutorials/

– MATLAB Primer / Getting Started with MATLAB (pdf):
http://www.mathworks.com/help/pdf_doc/MATLAB/getstart.pdf

Introduction to MATLAB Isaac Tetzloff - isaact@purdue.edu 47

http://www.mathworks.com/help/matlab/
http://www.mathworks.com/academia/student_center/tutorials/
http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf

